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Abstract
Microphthalmia-associated transcription factor (MITF) plays pivotal role in the maintenance of the melanocyte 

lineage, differentiation of normal and malignant melanocytes and the survival of melanoma cells. MITF regulates 
expression of many genes with critical functions in cell differentiation, proliferation, and pro-survival properties. 
Melanoma is an extremely resilient tumor for which no effective therapy exists when the tumor progresses into 
metastasis. Melanoma is a heterogenous tumor in which the microheterogeneity arises already in the first stages of 
the tumor development. Because the dependence of the melanocyte lineage on MITF is critical, MITF is regarded as 
the paradigmatic lineage-addiction oncogene and its gene is amplified in a smaller subset of melanomas. The level 
of MITF protein greatly differs among the tumor cells. Intriguingly, low MITF level cells are slowly proliferating but 
constitute an invasive subpopulation of tumor cells. In this minireview, I briefly discuss the many roles and activities 
of MITF in melanoma cells and the future prospects for melanoma therapy.
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Introduction 
Malignant melanoma is a highly aggressive skin cancer, the 

incidence of which is steadily on the rise. Melanoma is chemotherapy-
resistant with high mortality. Most melanomas harbour either V600E 
mutation of the BRAF gene (about 60%) or mutations of the NRAS 
oncogene (about 20%). Therefore, BRAF or downstream MAPK 
pathway has been the focus of the targeted intervention in melanoma. 
Unfortunately, in the majority of cases, acquired resistance to BRAF 
or MAPK/ERK inhibitors occurs after months when monotherapy is 
applied [1-3], possibly through several mechanisms such as reactivation 
of MAPK/ERK route or deregulation of other signaling pathways, e.g. 
PI3K/AKT/mTOR [4], high ZEB1 levels [5] or a formation of therapy-
induced prooncogenic secretome favouring tumor growth [6].

MITF gene encodes a transcription factor of the basic-helix-
loop-helix-leucine zipper type. The MITF genomic locus has several 
promoters producing corresponding MITF isoforms which differ in 
the first exon and share exons 2-9 [7]. The MITF-M isoform (named 
MITF in this article) is melanocyte-specific and is expressed exclusively 
in melanocytes and melanoma cells. MITF determines the identity of 
the melanocyte lineage in the embryonic development, normal adult 
melanocytes and melanoma cells. MITF regulates a number of genes 
involved in melanocyte differentiation and pigment formation [8] and 
in the survival, migration, proliferation, invasion and progression of 
melanoma cells.

It has been known for a long time that the transcription of MITF 
gene is supported by four main transcription factors, each having the 
binding site in the MITF promoter: CREB, SOX10, LEF1 and PAX3 [9-
14]. The α-MSH hormone increases cAMP level and thus substantially 
contributes to MITF transcription by CREB. The β-catenin pathway is an 
important activator of MITF expression in melanomas. More recently, 
receptor tyrosine protein kinase TYRO3 has been found to activate 
MITF expression through SOX10 [15]. p21 protein can also help activate 
MITF expression, constituting the positive loop (see below) [16]. On the 
other hand, BRN2 (POU3F2) directly represses MITF expression [17]. 
Similarly, SOX5 has been demonstrated to inhibit MITF expression 
[18]. Several other transcription factors, such as SOX2 [19], and several 
microRNAs can modulate MITF expression (reviewed in Vachtenheim 
and Ondrušová [20]). The chromatin remodeling complex SWI/SNF 

was shown to be the necessary epigenetic transcriptional coactivator of 
MITF [21] and some of MITF targets [22]. 

Importance of MITF for Melanoma Differentiation and 
Proliferation 

A large number of genes constitute the MITF targets. One group 
of genes comprises the melanogenic enzymes (TYR, TRP1 and DCT) 
involved in the formation of the pigment melanin. MITF also regulates 
many other genes which are responsible for melanin deposition, 
melanosome migration and transfer of melanosomes to keratinocytes 
[8,23,24]. MITF is therefore absolutely essential for pigment cell 
differentiation.

The proliferation of melanoma is believed to occur predominantly 
through the activation of the MAPK pathway, fueled by mutated BRAF 
and NRAS. MITF also transcriptionally activates expression of CDK2, 
which can contribute to high proliferation rate incurred by MIFT [25]. 
Intriguingly, some melanoma cell lines contain low MITF levels but 
proliferate rapidly (e.g. widely used A375 cells). In these cell lines, many 
deregulated signaling pathways presumably keep the high proliferation 
of melanoma cells. For example, the Hedgehog/GLI signaling [26], 
PI3K/AKT/mTOR [4] and Wnt/β-catenin [11] signaling are active in 
melanomas and are crucial for tumor progression. Suprisingly, MITF 
activates also genes with adverse functions in proliferation such as the 
negative cell cycle regulators p21(WAF1) [27] and INK4A (coding 
the p16 tumor suppressor) [28]. Activation of these genes probably 
function only in normal melanocytes and benign nevi. The p16/
CDKN2A gene has been earlier regarded as a “melanoma gene” and 
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is inactivated in 20% of melanoma families [29]. Noteworthy, frequent 
gene amplification and overexpression of cyclin D can contribute to 
melanoma proliferation [30,31].

Antiapoptotic Role of MITF
Besides these differentiation genes stand MITF targets with 

predominantly pro-survival function, having important implications 
for melanoma maintenance. MITF upregulates the expression of the 
general antiapoptotic protein BCL2 [32], which is important for the 
survival of both melanoma and other cells of the melanocyte lineage. 
A related gene, BCL2A1, is amplified in a subset of melanomas and is 
crucial for their the survival. BCL2A1 is also a direct transcriptional 
target of MITF. Thus, MITF-BCL2A1 is a lineage-specific oncogenic 
pathway in melanoma targetable by obatoclax, an inhibitor of all BCL2 
family members, which is effective in melanoma treatment and improves 
the response to BRAF-directed therapy [33]. The antiapoptotic signals 
have been reported to be mediated by the MITF target BPTF protein 
that transduces key prosurvival role driven by MITF [34]. Another 
proapoptotic MITF target is ML-IAP/livin [35]. Together, several 
strong antiapoptotic proteins are MITF targets acting downstream of 
MITF and mediating its antiapoptotic role. SLUG protein has been 
reported to be a crucial determinant of melanoma metastasis in the 
mouse model, and SLUG gene is also upregulated by MITF [36]. In 
humans, however, SLUG expression was low in melanoma metastases 
and high in benign nevi [37]. 

MITF as an Oncogene
MITF is a lineage identity-maintaining melanoma transcription 

factor. It has been discovered that MITF is amplified in a smaller 
subset of melanoma cell lines and tumors (the region of chromosome 
3p containing MITF) [38-39]. So, not only the melanocyte lineage 
constituting normal melanocytes, but also melanomas are entirely 
dependent on MITF which provides prosurvival antiapoptotic signals. 
Due to this function, MITF is also regarded as an example of the 
“lineage addiction” oncogenes. Other cancers, such as prostate (where 
lineage-addiction oncogene is an androgen receptor, AR), intestine, 
lung or mammary contain, sometimes only predicted, lineage-
addiction oncogenes [40]. In some melanomas or cell lines, the MITF 
level is low, raising the question whether the level is sufficient to sustain 
survival. At least two explanations might explain this situation. First, 
the requirement of MITF level may be highly variable, depending on 
the genetic context. Secondly, other antiapoptotic proteins may provide 
a surrogate survival function when MITF level is very low. MITF and 
other lineage-survival genes present in other tumors therefore implicate 
lineage dependency as a mechanism that is essential for tumor survival. 
The lineage addiction oncogenes are therefore potential targets for 
tumor treatment.

The Phenotype Switching and Decreased Levels of MITF 
in Invasive Cells 

The phenotype switching normally occurs during tumor 
progression. Epithelial-to-mesenchymal transition (EMT) is a 
tumorigenic program through which epithelial cancer cells acquire 
mesenchymal, more prooncogenic phenotype. Melanoma cells, 
although they are not typically epithelial, also undergo EMT. The 
reversible phenotype switching is an event still not completely 
understood in melanoma. A “rheostat model” has been suggested, in 
which highly proliferating cells are differentiated and contain high 
MITF, while slowly proliferating cells contain low MITF and are 
more invasive [41]. This situation was observed in 501 mel cells, but 

areas with low MITF and increased oncogenic protein BRN2 were 
indeed observed in tumors [17,42]. Furthermore, slowly-proliferating 
populations were observed expressing high AXL [43] or a proinvasive 
transcription factor GLI2 (a Hedgehog pathway signaling effector) [44], 
which was recently identified as an activator of survivin transcription 
accross a number of tumor cell types including melanomas [45].

EMT and increased invasivity is believed to be associated with 
lower levels of MITF, whereas increased proliferation is linked to higher 
MITF levels. However, the precise role of MITF in the phenotype 
switching is still incompletely characterized. The main hallmarks 
of EMT is the loss of E-cadherin (resulting in decreased adhesion to 
human keratinocytes) and increase of N-cadherin expression. SNAIL 
is also frequently increased [46]. Although ZEB1 in elevated during 
EMT in melanoma as in other tumors, ZEB2 has been described 
decreased in melanomas [46,47]. The role of SLUG in melanoma 
EMT is controversial. The prevailing opinion is that SLUG does not 
participate in EMT and melanoma invasion and progression. ZEB1, a 
known inducer of EMT and invasiveness, is typically elevated protein 
in EMT, whereas ZEB2 supports differentiation rather than EMT [46-
50]. In conformity with this, melanomas display ZEB1 expression 
during EMT, but ZEB2 and SLUG stand on the differentiation, anti-
EMT side. For instance, high levels of ZEB1 expression were found to 
be associated with acquired or inherent resistance to MAPK inhibitors 
in BRAF-mutated melanoma cell lines and tumors [5]. Wels et al. [51] 
reported that SLUG and ZEB1 cooperated to repress E-cadherin and 
promoted migration of melanoma cells.

An interesting finding linking directly the lower MITF levels with 
higher invasion involves the cell GTP levels [52]. It has been shown that 
MITF is an upstream regulator of guanosine monophosphate reductase 
(GMPR), an enzyme of guanylate metabolism. GMPR depletion can 
increase cellular GTP levels in cultured cells, an event eliciting greater 
melanoma invasivity. The lower GTP levels in cells overexpressing 
MITF or GMPR cause decreased invasion. Furthermore, when siRNA-
mediated decrease of MITF was induced with consequent lowered levels 
of GMPR, even small increase of GTP (several per cents) generated high 
increase of invasion. The morphology of MITF-depleted invasive cells 
is accompanied with a larger number of invadopodia [53]. Suppression 
of RAC1 activity was required to reduce invasiveness caused by MITF 
depletion. Interestingly, this mechanism which increases invasion is 
not dependent on other upstream MITF-regulating factors and might 
explain the higher invasivity induced by low MITF. Downregulated 
MITF favoring invasive phenotype can be achieved also through the 
hypoxic conditions. Under hypoxia, HIF1α activates protein DEC1 
(BHLHE40) and DEC1 represses MITF transcription. Inhibitors of 
prolyl hydroxylase stabilizing HIF1α suppressed melanoma growth 
in mouse xenografts [54]. The melanoma main driver mutation 
BRAF(V600E) has been shown to activate the MAPK pathway that 
reduces the MITF levels [55]. Intriguingly, BRAF(V600E) has thus 
also a second function: regulation of MITF levels. It can activate 
MITF expression through the activation of BRN2 which activates 
MITF expression, a result contrasting the previous function of BRN2 
being a MITF repressor [17]. Because BRN2 expression is activated by 
mutated BRAF, this reversible regulation mechanism requires further 
investigation.

Conclusions and Perspectives for Melanomy Therapy
The understanding of MITF transcription factor functions have 

revealed basic insights into the melanocyte development and biology 
of melanoma. The phenotype switching can be reversible in melanoma. 
Further, melanoma cells display extreme microheterogeneity, which can 
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be extended even to a single cell level [56]. This opens the way toward 
extreme plasticity, migration and early metastasis to the tumors. In low 
MITF tumors the high expression of the receptor kinase AXL seems to 
be a frequent event constituting MITF-low/AXL-high phenotype, which 
predicts the resistance to drug treatment [57]. High AXL expression has 
been observed earlier in more than one third of melanomas [43], which 
were designated as MITF-negative. This opens the question whether 
melanomas completely lacking MITF are still melanomas. The high 
AXL tumors might have expressed low amounts of MITF, at least in 
some cells. The melanomas completely lacking MITF must have also 
lost all differentiation markers and such tumors are probably non-
melanotic undifferentiated tumors where the antiapoptosis function 
has been changed from MITF to other antiapoptotic gene(s), e.g. AXL. 

The many compounds available for the targeted therapy including 
phytochemical agents [58] and their combination make promise 
for future studies that should be conducted to carefully elucidate the 
synthetic lethal effect of agents on melanoma invasion, migration, and 
metastasis. Although melanomas possess some suitable molecular 
targets (mutated BRAF, MAPK pathway) for therapy, the resistance 
evolving in this kind of treatment requires finding other approaches of 
targeted therapy which would be beneficial for all patients irrespective 
of specific mutations or alterations harbored in specific tumor subsets.
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