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Introduction
The acute respiratory distress syndrome (ARDS) is a major challenge 

in pulmonary and critical care medicine with high morbidity and 
mortality [1-3]. According to a recent multi-center study on mortality 
from USA in 2010, the crude mortality of ICU patients declined from 
31% in 1998 to 28% in 2010 [4]. However, these epidemiological 
surveys of incidence and mortality lacked participations of small units 
of the institution and ignored medical treatment units of other degrees. 
Also, US Centers of Disease Control announced that, ARDS, together 
with COPD and IPF, represented the third fatal disease following heart 
diseases and cancer, which has impact on 600 million people worldwide 
[5]. In the ICU, ARDS is responsible for up to 40% mortality of single 
organ injury without MODS [6]. 

The pathogenesis of ARDS include: out of controlled innate 
immune mediated inflammatory reaction in the lungs; a variety of 
inflammatory response promoted aggregation and activation of a large 
number of inflammatory factors, which stimulated the coagulation/
fibrinolysis pathway; increased alveolar epithelial and endothelial 
permeability; protein accumulation and formation of pulmonary edema 
in distal air space [7]. Thus, development of novel therapeutic strategy 
against ARDS need to be based on those pathophysiological changes: 
reduction of inflammatory factors, absorption of alveolar fluid, repair 
of endothelial and epithelial barrier and removal of inflammatory 
cells from the distal alveolar cavity. Except prone position ventilation 
in certain patients and low tidal volume ventilation [8,9], the overall 
effective management of ARDS is limited. At present, there is still no 
available medicine for ARDS yet. However, numbers of clinical trials 
and preclinical validation studies are in progress. As the mesenchymal 
stem cells (MSCs) therapy shows promising result in recent studies, it 
appears an attractive approach in ARDS therapy.

There is a rising of studies, both in vitro and in vivo, suggesting 
that stem cells from the adult tissue are engaged in both repair and 
regeneration of organs, e.g. bone fracture [10], type I diabetes mellitus 
[11], Crohn’s diseases [12], and myocardial infarction [13]. Studies 
of influenza infected mouse models showed that mice treated with 
stem cells were more likely to survive and had normal lung histology 
after three to five months, while in the control group, bronchiolar of 
mice suffered infection, and the alveolar cells presented extensive 
inflammation and hemorrhagic edema [14]. Considering few clinical 

trials using MSC in ARDS therapy were undertaking, cell-based therapy 
seems to be a promising regiment in future respiratory medicine [15].

Depending on their source, stem cells can be divided into embryonic 
and adult stem cells. For ethical and safety, most of the researches 
focus on adult stem cell therapy. Over the past years, a variety of bone 
marrow-derived cells have been found to differentiate into airway 
and even alveolar epithelial cells, including hematopoietic stem cells 
(HSCs), mesenchymal stem cells (MSCs), multipotent adult progenitor 
cells (MAPC), and other populations [16]. Among them, MSCs is one of 
the most suitable cellular therapeutic strategy due to their accessibility, 
differentiation potential into lung tissues, immunomodulatory ability 
and regeneration properties [17,18]. They also have excellent safety 
record and the ability of treating various kinds of diseases in animal 
models [19]. This review focuses on the mechanisms of MSCs in ARDS, 
and technical protocol for cell based therapy.

History and Definition of MSCs
Stem cells were first discovered by Friedenstein [20,21], who defined 

the bone marrow osteogenic stem cells and found their high potential 
as proliferation and ability as common bone precursors and cartilage-
forming cells. Caplan et al. [22] first used the name- mesenchymal stem 
cell, to define cells responsible for formatting and repairing bone and 
cartilage. Recently, results of meta-analysis from MEDLINE, EMBASE, 
BIOSIS and Web of Science have shown that MSCs substantially reduce 
the odds of death in animal models of ALI [23]. 

Mesenchymal stem cells (MSCs), also called skeletal stem cells or 
bone marrow stromal stem cells, are plastic adherent, non-hematopoietic 
cells that possess self-renewal and multi-lineage differentiation capacity 
[24]. MSCs are also derived from many kinds of tissues like bone 
marrow, adipose tissue, and placenta. The International Society of 
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Cellular Therapy in 2006 defined MSCs based on three criteria: (1) they 
must be adherent to plastic under standard tissue culture conditions; 
(2) they must express certain cell surface markers such as CD73, CD90, 
and CD105, but must not express CD45, CD34, CD14, or CD11b; 
and (3) they must have the capacity to differentiate into mesenchymal 
lineages including osteoblasts, adipocytes, and chondroblasts under in 
vitro conditions [25].

Isolation and Differentiation of MSCs
As is explained in definition, MSCs are plastic adherent cells which 

express a variety of surface markers, such as CD44, CD63, CD105, 
CD146. The nature of this plastic adherence can be used to identify 
and isolate MSCs [26]. Based on these surface markers, recent studies 
isolated MSCs [27] by exploring DNA microarrays that define a set of 
biomarkers for in vivo bone-forming capacity and “stemness” [28]. 
MSCs from different tissues exhibit distinct molecular phenotype 
and differentiation potential, which has been reported in umbilical 
cord, adipose tissue, skeletal muscle, periodontal ligament and even 
brain [29-31]. However, only bone marrow-derived MSCs [32] have 
demonstrated the ability to form tissues in vivo [33], while more 
evidence of MSCs from other tissues is still needed. Meanwhile, MSCs 
can differentiate into and recruit several types of lung tissues with great 
potential. Given their efficiency in cell therapeutics, it is necessary to 
find out molecular mechanisms about how lineage-specificity controls 
differentiation. For example, studies show that Runx2 and PPARγ 
are expressed by osteoblastic and adipocytic lineages, respectively. 
And expression of these transcription factors is regulated by micro-
environmental conditions including hormonal, growth factors, and 
mechanical forces. They induce a number of intracellular signaling 
pathways mediating the effects on transcription factors. In addition, 
the role of non-coding RNAs like miRNAs may regulate the expression 
and function of transcription factors that determine the differentiation 
fate of MSCs [34]. Also, derivation and purification of MSC contribute 
to the effect of treatment in animals [35]. Many experiment focused 
on the source of bone marrow while some novel trials found human 
umbilical cord-derived MSC [36].

Administration Method of MSCs (Table 1)
In animal studies, intratracheal route and intravenous route are 

two main delivery administrating method for MSCs therapy [6]. 
Appropriate method depends on the animal models and the most 
optimal method remains unclear.  The experiments with E. coli 
endotoxin or bacterial induced model of acute lung injury(ALI) often 
delivered MSCs intratracheally [37,38]. Studies using bleomycin-
induced [39], ischemia reperfusion-induced [40], ventilator-induced 
[41] and part of lipopolysaccharide(LPS)-induced [42] lung injury 
models administrated intravenously. Interestingly, Qin et al. [43] 
invented a novel method which was intra-pleural delivered. However, 
for practical reasons, intravenous administration is similar to clinical 
use and it is not easily to deliver cells into bronchia in patients with 
ARDS. 

The way of administration may alter the timing of effect. In LPS-
induced ALI models, beneficial time of MSCs through intratracheal 
delivery were less than 3 days while the time of effects were longer when 
MSCs were given intravenously. Of note, the timing of administration 
was within 6 h following ALI.

In ALI models of mice, as Zhu etc. summarized, the mean dose of 
MSCs typically was 29.9~106 cells/kg BW, and in rats it was 20.3 ~106 
cells/kg BW, suggesting that the mean dose of MSC in ALI models in 

rodents typically ranges from 20 to 30 × 106 cells/kg BW [6]. Although 
many believe that higher doses will give a prolonged response, no actual 
dose response has been reported in the literature. However, no dose 
response study has been yet published.

Safety of MSCs and updated progress of MSCs therapy in 
ARDS 

Before clinical use of MSCs, their safety should be evaluated firstly. 
At present, a plenty of clinical trials of MSCs have been conducted on 
different diseases [44]. In addition, MSCs have been tested, with no 
apparent major adverse effects. According to these clinical trials for 
usage of MSCs, no safety issues have arisen, and no potential concerns 
of tumor or ectopic tissue formation have been reported. A commercial 
MSC preparation showed no serious adverse events (SAEs) in a phase I 
trial and a phase II study in patients of Crohn’s disease [45]. Currently, 
a phase III trial has been approved by FDA for its therapeutic usage 
for Crohn’s Disease [46].  Recently, a randomized, multi-center test of 
systemic MSCs use for COPD treatment showed no adverse effects or 
pulmonary function impairment [47]. 

Potential efficacy and safety of MSCs administration for the 
treatment of ARDS had been demonstrated in pre-clinical studies, 
including experiments in animals and in ex vivo perfused human lung 
models [48,49]. Recently, a study tested allogeneic adipose-derived 
human MSCs in 12 patients with moderate to severe ARDS and 
reported no infusion-related adverse events but the clinical effect with 
the doses of 1 million cells/kg MSCs was minor [50].

In a phase I clinical trial of MSCs in ARDS patients, no specified 
events or treatment-related adverse events were reported, and none 
of the SAEs were thought to be MSC-related [51]. In this study, bone 
marrow-derived human MSCs was well tolerated in nine patients with 
moderate to severe ARDS [51]. More researches are being conducted to 
determine long-term safety of MSCs. 

However, limited number of MSCs homing to injured tissues still 
existed in many experiments [52,53]. Besides the ability of expression 
of chemokine receptors and adhesion molecules to mediate homing of 
leukocytes to inflamed tissues [54], precise role of MSCs homing is still 
under investigation. Also, the optimal dose of MSCs remained unclear. 
Highest dose of 10 million MSCs/kg demonstrated more efficient in 
severe lung injury in sheep [55] and this dose was well tolerated in 9 
patients with moderate-to-severe ARDS [56], it remained uncertain 
whether the dose was optimal or not. Further studies were warranted to 
figure out the details of MSCs therapy.

Mechanism of MSCs 
MSCs based therapy is thought to be a potential novel strategy for 

ARDS for a number of reasons. Firstly, MSCs are multi-potent cells 
with the ability of inflammation inhibition and immunomodulation. 
Mean MCSs are also capable of secreting multiple paracrine factors 
including KGF, Ang-1. They also have ability to serve as the vehicle of 
gene therapy, which may enhance ability of MSCs in lung injury repair 
in ARDS.

MSCs inhibit inflammatory factors and regulate the immune 
system 

MSCs, which secrete a variety of active molecules, including 
cytokines, growth factors, anti-inflammatory peptides, and 
antimicrobial peptides, present significant immunity effects. They 
suppress activation of lymphocytes and secretion of inflammatory 
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ALI model/ARDS Delivery route Dose( x10(6)/animal) Mean dose( x10(6)/kg) PMID

Rats (200-300 g) LPS-induced injury 
(intraperitoneal) Intravenous 2 6.67-10 23289000

    Left thigh muscle 2 6.67-10 20664529
    Intrapleural 1 3.33-5 22697354
  Paraquat (PQ) poisoning Intravenous 10 33.3-50 23257085
          23902576

  Ventilator-induced lung 
injury. Intratracheal 4 13.3-20 23377221

  Intravenous 2 6.67-10 22106021

  Acute pulmonary ischemia-
reperfusion (IR) injury Intravenous 1.5 5-7.5 21781312

  Burn Induction Thigh muscle 2 6.67-10 20573305

  Bleomycin (BLM)-induced 
acute lung injury Intravenous 1 3.33-25 20137099

          18589176

Mice（30-35 g)
LPS-induced injury( 

intratracheal) Intratracheal 0.75 21.4-25 17641052

          23360775
      0.25 7.13-8.33 23023971
      0.5 14.26-16.66 21569482
      1 28.52-33.33 21691076
    Intravenous 1 28.52-33.33 23760104
    Jugular venous canula 0.25 7.13-8.33 17803352
  intraperitoneal Intravenous      
      0.5 14.26-16.66 17416739
      1 28.52-33.33 23760104

  Escherichia coli-induced 
acute lung injury Intratracheal 1 28.6-33.3 21843339

          20945332

  Bleomycin (BLM)-induced 
acute lung injury Intravenous 1 28.6-33.3 23207668

          19497992
  P. aeruginosa Intravenous 1 28.6-33.3 22427530
  Polidocanol Intratracheal 1 28.6-33.3 19606934

  Cecal ligation and 
puncture Intravenous 1 28.6-33.3 19098906

Rabbits（2 kg）
Early stage of smoke 

inhalation injury Intravenous 10   25214973

Sheep(30-40 kg) Pseudomonas aeruginosa Intravenous   5-10 24891325
Humans’ clinical trial ARDS Intravenous   1-10 24708472

Table 1: Studies including animal models and clinical trials in ARDS with MSCs treatment.

factors responsible for the antimicrobial activity of MSC against Gram-
negative bacteria is human cathelicidin antimicrobial peptide, hCAP-
18/LL-37 [37]. 

Importantly, MSCs can modulate innate and adaptive immune cells. 
First MSCs promote repolarization of monocytes and macrophages 
from type 1 to type 2 phenotype, which is characterized by high level 
of interleukin-10 secretion. Interleukin-10 blocks polymorphonuclear 
neutrophil influx into the injured tissue and prevents further damage 
[35,66-69]. Second, MSCs own the ability of interfering with dendritic 
cells differentiation, maturation and function, by skewing them 
towards a regulatory phenotype and decreasing their capacity to 
induce T cells activation. Third, they also impair cytotoxic activity, 
cytokine production and granzyme B release of natural killer cells 
[70,71].  Fourth, MSCs suppress T cell activation and proliferation 
and decrease their response by shifting them from Th1 to Th2 
immune response [72]. Moreover, MSCs have been shown to inhibit 
the differentiation of naive T cells into Th17 cells and prevent the 

factors (TNF-a, IFNc), and induce the release of anti-inflammatory 
factors (IL-10, IL-4) [57-59]. These effects increase the clearance of 
alveolar fluid and reduce inflammation, thus reverse the lung injury 
[60,61]. In addition to releasing soluble anti-inflammatory factors, the 
MSCs transfer microvesicles containing mitochondria, protein, and 
microRNA to other cells [62]. Inflammatory cytokines are thought 
to contribute to diffuse alveolar damage (DAD), in part by disrupting 
endothelial functions at capillary-alveolar junction, which leads to 
junction breaching, type II cell dysfunction, and surfactants loss. 
LPS-induced ALI model shows that after 24 h of MSC administration, 
the systemic inflammation is reduced because of many kinds of 
inflammatory mediators [63]. Studies also show that endothelial 
FoxM1 induces vascular repair as well as inflammation reduction 
[64]. Additionally, MSC reduced mortality in a mouse model of gram-
negative peritonitis and sepsis, and the improvement in bacterial 
clearance was mediated through enhancement of phagocytic activity 
of peripheral blood mononuclear cells [65]. Furthermore, analysis of 
expression of major antimicrobial peptides indicates that one of the 
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secretion of pro-inflammatory cytokines by Th17 cells [73]. MSCs also 
promote induction of immunosuppressive T regulatory cells partially 
by reprogramming Th17 cells into T regulatory cells [35,74,75].

Restoring the integrity of pulmonary vascular barrier

More recent data suggest that factors released by MSCs influence 
the balance of permeability of alveolar-capillary induce leak of 
endothelial fluid [76,77]. Some reports of animal experiments describe 
that intrapulmonary MSC administration method can improve survival 
rate, by reducing pulmonary edema formation [48] and promoting 
repair of epithelium and endothelium [78]. Researchers have compiled 
adult stem cell therapy of the main clinical and experimental researches, 
which suggests that MSC on lung development and repair and 
remodeling of the beneficial effects and the side of secreted factors can 
effectively reduce inflammation and promote tissue repair [79]. And 
these factors have been evident in cultured human alveolar epithelial 
cells [80], which helped to restore the integrity of pulmonary vascular 
barrier. Furthermore, circumstantial evidence of humans and mice 
shows that ARDS may trigger the regeneration of pulmonary tissue. 
Meanwhile, the stem cells may play a role in this remarkable process, 
which yielded a defined set of cloned human airway stem cells marked 
by p63 expression [81].

Mechanisms may also involve the protection and repair of the 
epithelial barrier. MSCs releases angiogenesis -1 that prevents formation 
of actin stress fibers and disorganization of claudin 18, which is closely 
connected with the function to destroy epithelial cells, induce S1P 
and inhibit the internalization of endothelial VE-cadherin, through 
suppression of NF-κB activity. In experiment, stem cells use connecxin 
(connexin-43–based gap junctional channels) to attach to the walls of 
the alveoli and then translocate alveolar epithelial cell mitochondria 
damaged by endotoxin, thus help alveolar ATP generation, surface 
active agent production, and epithelial barrier restoration [62]. In 
addition, refilling the lost lung cells can restore the function of lung in 
the short term [82]. Researchers observed that cell therapy resulted in 
hyperplasia of type II cells and repair of the damaged epithelium [83].

Alveolar fluid reabsorption is based on sodium and chloride channels 
of the alveolar epithelial cells, injury of which is related to the epithelial 
cell damage, necrosis and apoptosis, caused by ARDS. Recovery of 
alveolar fluid reabsorption mainly depends on reconstruction of the 
epithelial barrier using new alveolar epithelium produced by alveolar 
type II epithelial cells. There is the evidence that primitive cells from the 
junction of bronchial cells promote the activation of repair device; the 
expression of alpha beta 64 - primitive cells [84] and c-kit + lung stem 
cell 204 is involved in this case. Some studies found that endothelial 
FOXM1 mediated bone marrow progenitor cells and induced 
inflammatory vascular repair after lung injury by restoring its integrity 
and accelerating the dissipation of inflammation [64].

MSCs engraftment in epithelium and recruitment in 
endothelial cells

Intravenous infusion is an ideal method of MSCs administration 
because it makes cells entrapped in lung capillary beds [85]. In 
addition, MSCs have the ability to transport to the inflammatory sites 
and migrate through the injured endothelium into the lung tissue, 
which is crucial for the treatment of ARDS [86]. This situation is driven 
by the connection between the chemokines released by injured sites 
and the receptors expressed by MSCs. While both embryonic and adult 
stem cells can be induced to express phenotypic markers of airway and/
or alveolar epithelial cells in vitro, engraftment of airway or alveolar 

epithelium by stem or progenitor cells following systemic administration 
is rare and of unclear physiologic or therapeutic significance [15,16,87]. 
Nevertheless, MSCs respond, migrate, and facilitate repair of damaged 
tissue making them an attractive candidate for both prevention and 
treatment of lung disease.  

The mechanisms of engraftment are not well understood. Both 
in vitro and in vivo experiments showed that the fusion of stem cells 
with other cells might be one approach. Other studies suggested that 
stem cells might acquire phenotypes of epithelial cells, which express 
markers induced by soluble factors from injured lung epithelium, 
possibly activated by Wnt/β-catenin pathway [89,90] or JNK-P38 
signaling pathway [91]. One recent study showed that phenotypic 
change is induced by the release of membrane-derived microvesicles, 
which mediate communications between cells by transferring miRNAs 
[92,93]. Moreover, recent study showed transplantation of MSCs could 
improve lung injury through increasing autophagy-related signaling 
molecules. This result supports the hypothesis  that MSCs stimulate 
autophagy in OGD-injured HPMVECs, at least in part via the PI3K/
Akt signalling pathway[94,95].   

Circulating or systemically administered stem or progenitor cells 
can be recruited into lungs and many of them initially localize in injured 
lung tissue [96-98]. In the meantime, the timing of cell administration 
after lung injury affects their recruitment and differentiation. Also, 
systemic administration of MSCs 4 hours after lung injury resulted in 
apparent engraftment as epithetical and endothelial cells [96] while 
administration at the later time resulted in engraftment as interstitial 
cells [96,99]. MSCs can secrete angiopoietin-1, which is a soluble factor 
capable of improving endothelial permeability and enhancing the 
endothelium survival and the vascular stabilization [100]. Meanwhile, 
MSCs inhibit the inflammation and preserve the integrity of vascular 
endothelium in the lungs after hemorrhagic shock [101].

Paracrine-modulating factors and KGF (Table 2)

It was firstly demonstrated by observing that systemic administration 
of MSCs were able to inhibit expression of several inflammatory 
cytokines in models of ALI [102]. In LPS-induced ARDS, 24 h after 
MSCs administration, inflammatory response was reduced because 
of release of the anti-inflammatory factors [63]. Interestingly, similar 
results were observed while only the medium of MSCs was used [49]. 
Despite the presence of MSCs in injured place, MSCs exert paracrine 
actions, secreting growth factors and cytokines. Indeed, paracrine-
modulating factors secreted by MSCs seem to contribute to injury 
repair rather than MSC engraftment [81]. Several studies identified 
that the level of engraftment in the lung is limited, and in vivo studies 
showed limited replacement of injured tissue. Several studies identified 
that the level of engraftment in the lung is limited, and in vivo studies 
showed limited replacement of injured tissue. Therapeutic effects were 
attributed to paracrine, which is an ability to secrete soluble factors 
that modulate immune responses [103], and only a small number of 
pulmonary MSCs engraftment was observed [83].

Low levels of MSC cell engraftment and an even greater preventative 
effect of delivery of cell-free MSC-conditioned media support the 
importance of paracrine effect. So, to strengthen immune modulation, 
a variety of studies use these cytokines obtained from MSC cultures in 
hypoxia condition instead of MSCs. These media, including interleukin 
(IL-6 and IL-1) and growth factors (FGF-2, FGF-7, and VEGF-A), were 
found to promote attenuation of inflammatory response and stimulate 
endothelial cell migration, contributing to repair of vascular tissue 
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in an ischemic muscle injury model [104]. Meanwhile, MSCs secrete 
chemokines and growth factors (TGFB, TSG6, PGE2) that stimulate 
endogenous/resident cells, exhibit anti-apoptotic and immuno-
modulatory effects as well as enhance vascular genesis [105,106] 
and the stimulation of all these secreted factors triggers the role of 
epithelial cell repair [107]. Moreover, recent in vivo studies showed a 
novel mechanism in which micro-vesicles released from MSC deliver 
messenger RNA (mRNA), micro RNA or proteins that reprogram the 
injured cells or induce secretion of cyto-protective factors, which has 
been demonstrated in ALI [108]. Above all, while systemically injected 
MSC can be entrapped in the lungs [109,110], they still make a positive 
influence through secretion of factors [111].

Secretion of paracrine factors that can regulate lung permeability 
and decrease inflammation by MSCs, is thought to be exerted in the 
treatment of ARDS. Keratinocyte growth factor (KGF), the role of which 
in acute lung injury has been studied since 1990s, has been extensively 
used in ARDS. Its characteristic of being stimulated by inflammatory 
cytokines and up-regulating the expression of the epithelial repair, may 
be one of the possible mechanisms for the MSCs treatment of ARDS, 
with consistent findings from other studies [112].  

In animal studies, KGF reduces lung injury and increases the 
proliferation and repair of epithelial cells. Many studies demonstrated 
that KGF up-regulates the expression of epithelial sodium channel 
gene and enhances Na-K-ATPase activity to increase alveolar fluid 
clearance [113]. In addition, KGF increases the concentrations of anti-
inflammatory cytokines IL-1ra and epithelial repair medium (MMP-9) 
in alveolar, and enhances macrophage function in necrotic cells and 
bacteria (GM-CSF) scavenging [114]. KGF mediated effects were not 
only found in animal models but also in clinical trials. Phase II clinical 
trials in Britain found that compared with the placebo group, KGF can 
increase the oxygen indexes of ARDS patients [115].

Similar to KGF, KGF-2, also named FGF-10 (fibroblast growth 
factor-10), is the heparin-binding protein expressed by MSCs, which 
binds to FGF receptor 2-IIIb expressed on epithelial cells. KGF-2 
mediates interactions between epithelium and MSCs, which is crucial 
for lung development [116,117]. KGF-2 also prevents lung injury [118-
120]. Furthermore, KGF-2 has no in vitro or in vivo effects on epithelial-
like tumors [121], which validates the safety of KGF-2.  Studies 
assessed the possibility of exogenous KGF-2 through directly in vivo 
experiments. Intratracheal administration of KGF-2 attenuates lung 
injury induced by LPS, suggesting that KGF-2 may reduce acute lung 
injury [122]. And pre-treatment with KGF-2 showed improvement 
of lung edema and inflammation compared with high-volume zero 
positive end-expiratory pressure (HVZP) alone, suggesting that KGF-2 
might be considered as a promising prevention for human ventilator-
induced lung injury (VILI) or other acute lung injury diseases [123]. 
Most recently, MSC-derived microvesicles have been found to protect 

LPS-induced ALI through delivering KGF mRNA into the injured 
alveolus [124]. Also, recent study showed a novel mechanism of KGF-
2 that could easily isolate the lower respiratory tract of rats to lung-
resident MSCs (LR-MSCs). Additionally, they illustrated that the LR-
MSCs isolated from KGF-2 pretreated rats were protective against LPS-
induced acute lung injury. Collectively, KGF-2 plays an important role 
in LR-MSCs proliferation and mobilization and in the organ specific 
protective effects against acute lung injury [125].

Gene therapy

MSCs have ability to serve as the vehicle of gene therapy in 
treatment of ARDS due to adhesion and proliferation properties [126]. 
Researches indicated that MSCs could deliver gene through viral vector 
based transplantation. While MSCs were transduced and maintained 
their own characteristics, including accessibility, proliferation and 
compatibility, it could be an ideal carrier to transfer gene to target 
tissues. Many studies demonstrated that transduced MSC could engraft 
and differentiate into lung epithelial cells with target gene expression 
[39,76,127]. Also, together with other types of cells, MSC could fuse 
with one of them to form a heterokaryon, converting its gene expression 
patterns to that fusion partner [128]. An experimental study found that 
20–50% of lung epithelial cells derived from such cell fusion [129]. 

Additionally, combination of gene therapies showed further 
improved efficiency compared to use MSC alone. For instance, in an 
ALI model, administration of MSCs transfected with angiopoietin-1 
improved alveolar inflammatory and permeability result, comparing 
with MSCs alone [76,80]. Furthermore, an in vivo mouse model 
showed that the LPS-induced lung injury was remarkably improved in 
the group treated with MSCs carrying FGF2 (MSCs-FGF2), including 
reduced histopathological index and level of inflammatory cytokines, 
suggesting that MSCs and FGF2 have a synergistic effect [130]. 
Although macrophages play a role in ARDS, the MSCs only weakly 
modulate macrophage function. However, researchers found MSCs 
stably transfected with a vector expressing negative inhibitor of CCL2 
could induce macrophage activation. This experiment showed that 
MSCs can be used for drug delivery. Moreover, MSC-based endothelial 
locus-1 gene therapy has been established [131], which may enhance 
ability of MSCs repairing lung injury in ARDS [132].

Conclusion
ARDS has been studied so far for more than 40 years in 

epidemiology, risk factors, pathogenesis, diagnosis, treatment and 
prognosis. In spite of important developments of novel therapies, the 
mortality of ARDS is still high due to the complexity of the disease itself. 
Thus, ARDS becomes one of the leading lethal diseases in respiratory 
field. Exploring new treatments options based on pathogenesis is the 
future direction of ARDS research. Stem cells, especially MSCs, are the 
state-of-art progress of recent researches in ARDS. The mechanisms of 
MSCs therapy includes reducing inflammation, repairing lung tissue 
and the paracrine ability. Given the current findings, a promise is held 
for new breakthroughs in ARDS by cell based therapy.
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