alexa The Mycology as Forensics Tool | Open Access Journals
ISSN: 2379-1764
Advanced Techniques in Biology & Medicine
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

The Mycology as Forensics Tool

Tranchida María Cecilia* and Cabello Marta Noemí

Botanical Institute C. Spegazzini, National University of La Plata, CONICET- CCT- La Plata, Argentina

Corresponding Author:
Tranchida María Cecilia
Botanical Institute C. Spegazzini
National University of La Plata
CONICET-CCT-La Plata, Argentina
Tel: +542214219845
E-mail: [email protected]

Received date: May 16, 2017; Accepted date: May 22, 2017; Published date: May 29, 2017

Citation: Cecilia TM, Noemí CM (2017) The Mycology as Forensics Tool. Adv Tech Biol Med 5:226. doi:10.4172/2379-1764.1000226

Copyright: © 2017 Cecilia TM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Advanced Techniques in Biology & Medicine

Abstract

In a murder case it is very common to find a corpse in a grave followed by the human decomposition. In a criminal act, the facts in a legal investigation are not clear enough to help clarify unnatural causes of death by suicide or homicide. Estimating the post-mortem interval (PMI), and mainly in cases where there are no witnesses, is crucial to the investigation process. However, the today study of certain species of fungi found and collected from soil in contact with a rotting human body; contribute to obtain important data useful to estimate the PMI of the victim in crime scene investigation. Dichotomomyces cejpii, Talaromyces trachyspermus, Talaromyces flavus and Talaromyces udagawae, teleomorphic Ascomycota fungal are the mycobiota currently found and clearly differs to associated mycobiota in control sample and from previously described species Buenos Aires Province, Argentina. Furthermore, additional tests are needed to finally rely on the mycology as a forensic tool.

The main focus of the forensic taphonomy is the study of environmental conditions influencing the decomposition process to estimate the postmortem interval and determine the cause and manner of death. The study is part of a specific branch of the forensic science that makes use of a broad aspect of methodologies taken from different areas of expertise such as botany, archeology, soil microbiology and entomology, all used for uncovering and examining clandestine graves allowing to succeed in the investigation process. Therefore, the “Forensic Mycology” emerges as a new science term meaning the study of the coexistence of fungal species nearby human cadavers as well as those fungal groups potentially useful in establishing a time of death [1,2].

When the researchers specialized in the criminal sciences find clandestine burials, they employ a wide variety of different techniques to study the ground changes where cadaver decomposition happens. Our goal was to isolate and identify the presence of soil mycobiota beneath human cadavers in decomposition based on evaluating the interaction between those under current conditions.

After the investigators or police department considered the death “suspicious in nature” but the cause and manner of death have not yet been determined, the officer authorized to take samples of soil for being studies. Our tools consisted of a set of sterile spoons. Randomly, we collected small portions of soil beneath the corpse and 15 m away of it, transferring the samples in hermetic lab bags to the laboratory. The mycobiota of the collected soil was analyzed by the techniques of: serial dilutions, wet chamber and soil washing, according to Tranchida et al. [3].

For the identification of fungal species, culture media as Corn Meal Yeast Agar (CMYA) (BBLTM, USA), Malt Extract Agar (MEA) (Difco, USA) and Potato Dextrose Agar (PDA) (Britania SA, Argentina) were used to study the morphology of the colonies. On the other hand, under optical microscopy using staining with cotton-blue lactophenol, the morphological structure of the fungal isolates obtained was observed. The Ultrastructure of fungal species was also observed in the Electronic Microscopes Service of the Museum of Natural Sciences in La Plata, using the scanning electron microscope Jeol JSM-6390 (JSM-6390LV, Jeol, Akishima, Tokyo, Japan), and the molecular identification was performed according to Stenglein et al. [4]. Original taxonomic documents and specific works such as Sotolk and Samson [5] and Domsch et al. [6] were used for the identification of sporulating fungi.

The mycobiota found at the present study area clearly differs to mycobiota identified in control sample and from previously described species for other areas of Buenos Aires Province, Argentina. The most representative fungal species were Dichotomomyces cejpii (Milko) Scott, Talaromyces trachyspermus (Shear) Sotolk and Samson [5], Talaromyces flavus (Klocker) Sotolk and Samson [5] and Talaromyces udagawae Sotolk and Samson [5]. These species are pioneers in the colonization of soils where mycobiotic had been modified due to the decomposition of cadaver contributing to the growing of fungi ammonia group. Four representative species were kept under accession numbers LPSC 1160, 1161, 1162 and 1163, in the collection of the C. spegazzini Botanical Institute of the National University of La Plata, being Dichotomomyces cejpii, T. trachyspermus, T. flavus and T. udagawae, respectively.

Talaromyces udagawae (teleomorphic, Ascomycota) is the most relevant species found in this work, as it’s a first record for Argentina and is the first time found in relation to human cadavers, pointing it as a tool to identify soils belonging to the human body in decomposition [7]. The anamorphic state of the specie was not observed. This fungus presents asci with 8 ornamented and ellipsoidal ascospores. The colonies are bright yellow color and very restricted growth in different culture media. It was identified through the use of molecular genetic techniques and in GenBank its DNA sequence was registered under accession number KF723838.

In recent decades, a number of field experiments and cases studies in mycology provided useful data for detecting sites where cadaver decomposition was in place. The data showed that certain chemoecologic groups of fungi can act as aboveground grave markers [1,2,8,9]. According to Carter and Tibbett [2], varieties of fungi that can potentially act as clandestine grave markers are known as ammonia and post-putrefaction fungi and can serve as a tool for the estimation of the post-burial interval as well. These early fungi can bear fruiting bodies from 1 to 10 months after soil fertilization with nitrogenous compounds and consist in the ascomycetes (anamorphs and teleomorphs) along with the saprotrophic basidiomycetes [10,11]. According to Sagara [10] and Fukiharu and Hongo [11] although their work dealt with forest soils D. cejpii, T. trachyspermus, T. flavus and T. udagawae, of the Ascomycota phylum, would correspond to early phase fungi: thus in our case, these structures were found 25 days after the individual’s death. The contribution of nitrogen compounds including amino acids from the proteins of the decomposing remains could have had a significant influence on the occurrence of these fungal species under the cadaver.

A systematic survey of fungal fruiting structures on grassland soil could be used to designate potential grave sites, thereby reducing the amount of time required to screen a large area. Such surveys would be appropriate where burial over months or years was suspected as a cadaver-related fruiting would not occur immediately after burial.

Although, in order to be used as an effective forensic tools, the fungal communities found in soil under decaying corpses need of additional studies, the results obtained here shows a very important starting point. The work aimed at the knowledge of fungal communities and the succession of these experiences when the death human body goes through the process of decomposition in the grave or on the ground. In Argentina, these studies represent the beginning of a new line of mycological investigation.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 299
  • [From(publication date):
    May-2017 - Sep 24, 2017]
  • Breakdown by view type
  • HTML page views : 254
  • PDF downloads :45
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords