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From the biophysical point of view pain signal can be considered 
as an abnormal (hyper) excitation of neuronal and muscle membranes, 
which is transmitted into central nervous system (CNS) and generates 
pain sensation. Hence, the bioequivalence of the water by the cells in 
the body determines the phenomenon. Since pain can be generated 
by different phenomena, starting from mechanical damage to the 
breakdown of different metabolic pathways, there must be a common 
cellular mechanism through which various physical, chemical and 
metabolic factors generate abnormal excitation of cell membrane. It is 
known that pain sensation can be changed upon the effect of extremely 
weak chemical and physical signals, having intensity even less than 
thermal threshold and non-linear dose-dependent character. Therefore, 
such a cellular target must have a quantum-mechanical nature. 
Previously we have suggested that cell hydration is a fundamental cell 
parameter which has quantum-mechanical sensitivity and determines 
cell functional activity, including membrane excitability [1-3]. The cell 
hydration-induced control of its functional activity is realized by surface 
dependent-changes of the number of functionally active proteins 
(enzymes, receptors and channels) in the membrane and hydration-
induced regulation of intracellular macromolecules’ activity through 
folding-unfolding mechanism [4-7]. Moreover, it has been shown that 
the metabolic control of cell membrane excitability has a crucial role 
in trans-membrane water fluxes-induced activation and inactivation of 
ionic channels. The water fluxes have activation effect on ionic currents 
having the same directions and inactivation effect on the currents with 
opposite directions [6,8]. As intracellular osmotic pressure exceeds the 
extracellular one, water efflux from the cells has a metabolic nature 
and it has been suggested that the metabolic generation of water 
efflux from the cell is a pathway through which the low permeability 
of membrane for inward Na+ and Ca2+ currents is controlled [6,9]. 
Therefore, the impairment of metabolically generated water efflux 
from the cells, bringing to the activation of net water influx, which in 
its turn leads to membrane permeability for Na+ and Ca2+, is a common 
consequence of any pathology. On the basis of these data previously we 
have suggested that pain sensation is a result of overhydration-induced 
hyper excitation of neuronal and muscle membranes [10]. According 
to this hypothesis the activation of water efflux from the neuronal and 
muscle cells could have pain-relieving effect. Therefore, the evaluation 
of the nature of the metabolic mechanism responsible for generation of 
water efflux from the cells seems extremely important from the point 
of effective pain therapy. 

It is known that water efflux can be generated by electrogenic ion 
transporting process pushing out more osmotic active particles from 

the cells than up taking as well as by releasing water molecules in 
cytoplasm during intracellular oxidative process. In these two aspects 
the Na+/K+ pump has a crucial role in metabolic regulation of cell 
volume: from one side Na+/K+ pump functioning in stoichiometry of 
3Na+:2K+ pushes out more osmotic particles that uptakes, from the 
other side Na+/K+ pump, being the highest ATP utilizing machine, 
stimulates the intracellular metabolism leading to water molecule 
release in cytoplasm [11,12]. 

It is known that Na+/K+-ATPase in nerve and muscle membranes 
has three catalytic isoforms having different affinities to ouabain. The 
isoforms with low affinity to ouabain (a1-agonist >10-7M) have Na+/
K+-pump function, while the middle (a2-agonist nM) and the highest 
(a3-agonist pM) affinity isoforms have only intracellular signaling 
function regulating [Ca2+] i through Na+/Ca2+ exchange localized in 
cell membrane [13,14]. Traditionally, the correlation between Na+/K+ 
pump and Na+/Ca2+ exchange is explained by pump-induced changes of 
the Na+ gradient on the membrane [13,15,16]. However, by our earlier 
work it has been shown that ouabain at nM and pM concentrations 
can have activation effects on Na+/Ca2+ exchange in reverse (R) and 
forward (F) modes, respectively without having direct effect on Na+/
K+ pump activity [4,17]. It has been shown that the activation of R Na+/
Ca2+ exchange is accompanied by the increase of intracellular cAMP 
contents, while the activation of F Na+/Ca2+ exchange by the increase 
of intracellular cGMP contents [17,18]. The role of cyclic nucleotides 
in controlling [Ca2+] i and in regulation of Na+/Ca2+ exchange was 
thoroughly described in the excellent review by Brini and Carafoli [19]. 

By our study it has also been shown that both R and F modes of Na+/
Ca2+ exchange serve as common sensors not only for low concentrations 
of ouabain but also for other weak chemical and physical signals such 
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as synaptical transmitters, their agonists and antagonists as well as 
for ionizing and non-ionizing radiation [20-25]. Meanwhile, cGMP-
dependent F Na+/Ca2+ exchange is more sensitive to aging and different 
factors than cAMP-dependent R Na+/Ca2+ exchange [26-28]. It has been 
shown that the increase of lipid fluidity (~40%) by the involvement of 
non-metabolized decanoic fatty acid in neuronal membrane leads to 
cell swelling, which is accompanied by the increase of intracellular 
cGMP contents without changing intracellular cAMP level [3,29,30]. 
These data allow us to consider that the water uptake-induced elevation 
of cGMP is a primary metabolic response to water uptake. The study 
of the feedback effect of cGMP-dependent Na+/Ca2+ exchange on cell 
hydration has shown that though Na+/Ca2+ exchange functions in 
stoichiometry of 3Na+:1Ca2+, the F Na+/Ca2+ exchange has dehydration 
effect on brain tissue in young (healthy) animals, while in older (non-
healthy) animals it has hydration effect. More detailed investigation 
of the nature of F Na+/Ca2+ exchange on brain tissue dehydration 
has shown that in healthy animals the cGMP-dependent F Na+/Ca2+-
induced cell dehydration is due to activation of Na+/K+ pump in result 
of [Ca2+] i decrease [15,18,27]. Thus, F Na+/Ca2+ exchange activation has 
pain-relieving effect as on one hand it leads to inhibition of membrane 
excitability by activation of Na+/K+ pump through generation of water 
efflux from the cells and by membrane hyperpolarization, on the other 
hand it depresses synaptical signal transmission by decreasing [Ca2+] i 
[6,31-33]. In case of high [Ca2+] i (cell pathology) when the power of F 
Na+/Ca2+ exchange is not enough to activate Na+/K+ pump, it leads to 
activation of water influx-induced generation of abnormal membrane 
discharge which stimulates high [Ca2+] i-induced activation of 
synaptical activity into CNS and generates pain sensation. Therefore, it 
is suggested that the inward water fluxes through the membrane serve 
as cellular primary mechanism for generation of pain signals.

This suggestion can be supported by the data on pain-relieving 
effect of hypertonic solution and the effects of the factors activating 
cGMP-dependent Na+/Ca2+ exchange such as static magnetic field, 
NO donors (SNAP), mechanical vibration with infrasound frequency 
[22,25,34-36].
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