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Introduction
Throughout w, χ and L2 denote the classes x of all, gai and analytic 

scalar valued single sequences, respectively. We write w2 for the set of 
all complex sequences (xmn) where m,n ∈ , the set of positive integers. 
Then w2 is a linear space under the coordinate wise addition and scalar 
multiplication. For some approximations results in Musielak-Orlicz-
Sobolev spaces and some applications to nonlinear partial differential 
equations see equation 22. The growing interest in this field is strongly 
stimulated by the treatment of recent problems in elasticity, fluid 
dynamics, calculus of variations, and differential equations.

Some initial works on double sequence spaces is found in 
Bromwich [1]. Later on it was investigated by Hardy [2], Moricz [3], 
Moricz and Rhoades [4], Basarir and Solankan [5], Tripathy et al. [6-
10], Turkmenoglu [11], Raj [11-14], and many others [15].

Let (xmn) be a double sequence of real or complex numbers. Then 
the series 

, =1 mnm n
x∞∑  is called a double series. The double series 

, =1 mnm n
x∞∑

give one space is said to be convergent if and only if the double sequence 
(Smn) is convergent, where:

,

, =1
= ( , = 1,2,3,...)m n

mn iji j
S x m n∑
A double sequence x = (xmn) is said to be double analytic if,

1

0m n
mnx + →

The vector space of all double analytic sequences are usually 
denoted by L2. A sequence x = (xmn) is called double entire sequence if

1

0m n
mnx + → as m,n,→∞.

The vector space of all double entire sequences are usually denoted 
by G2. Let the set of sequences with this property be denoted by L2 and 
G2 is a metric space with the metric

1

,( , ) = : , :1,2,3,... ,m n
m n mn mnd x y sup x y m n+

 − 
 

(1)

for all x = {xmn} and y = {ymn}in G2. Let φ = [finite sequences].

Consider a double sequence x = (xmn). The (m,n)th section x[m,n] of 
the sequence is defined by ,[ , ]

, =0
= m nm n

ij iji j
x x δ∑  for all m,n ∈ ,

 

0 0 ...0 0 ...
0 0 ...0 0 ...
.
.

=
.
0 0 ...1 0 ...
0 0 ...0 0 ...

mnδ

 
 
 
 
 
 
 
 
 
 
 
 
 

with 1 in the (m,n)th position and zero otherwise.

A double sequence x = (xmn) is called double gai sequence if 

( )
1

( )! 0m n
mnm n x ++ →  as m,n→∞. The double gai sequences will be

denoted by χ2.

Let M and Φ be mutually complementary Orlicz functions. Then, 
we have:

(i) For all u,y ≥ 0,

uy ≤ M (u) + Φ (y), (Young’s inequality) [16]    (2)

(ii) For all u ≥ 0,

uη(u) = M(u) + Φ(η(u)).    (3)

(iii) For all u ≥ 0, and 0 < λ < 1,

M(λu) ≤ λM(u)                    (4)

Lindenstrauss and Tzafriri [16] used the idea of Orlicz function to
construct Orlicz sequence space
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Abstract
In the present paper, we introduce new sequence spaces by using Musielak-Orlicz function and a generalized 

Bµ
η -difference operator on p–metric space. Some topological properties and inclusion relations are also examined.
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=1
= : < , > 0k

M k

x
x w M for some ρ

ρ
∞   ∈ ∞  

   
∑

,

The space M with the norm

=1
= > 0 : 1k

k

x
x inf Mρ

ρ
∞   ≤  

   
∑ ,

becomes a Banach space which is called an Orlicz sequence space. For 
M (t) = tp(1≤p<∞), the spaces M coincide with the classical sequence 
space p.

A sequence f = (fmn) of Orlicz function is called a Musielak-Orlicz 
function. A sequence g = (gmn) defined by gmn(v) = sup{|v|u – fmn(u): u 
≥ 0}, m,n = 1,2,… is called the complementary function of a Musielak-
Orlicz function f. For a given Musielak Orlicz function f, the Musielak-
Orlicz sequence space tf is defined by:

( ){ }1/2= : 0 , ,
m n

f f mnt x w I x as m n
+

∈ → →∞

where If is a convex modular defined by

( ) ( ) ( )1/

=1 =1
= , = .

m n
f mn mn mn fm n

I x f x x x t
+∞ ∞

∈∑ ∑
We consider tf equipped with the Luxemburg metric

( )
1/

=1 =1
, = 1 .

m n
mn

mn mnm n

x
d x y sup inf f

mn

+
∞ ∞

       ≤       
∑ ∑

The notion of difference sequence spaces (for single sequences) was 
introduced by Kizmaz [17] as follows

Z(∆) = {x = (xk) ∈ w: (∆xk) ∈ Z},

for Z = c,c0 and ∞, where ∆xk = xk – xk+1 for all k ∈ .

Here c,c0 and ∞ denote the classes of convergent, null and bounded 
sclar valued single sequences respectively. The spaces c(∆),c0(∆),l∞(∆) 
and bvp are Banach spaces normed by:

1 1= k kx x sup x≥+ ∆  and ( ) ( )
1/

=1
= , 1 < .

pp
kbv kp

x x p∞
≤ ∞∑

Later on the notion was further investigated by many others. We 
now introduce the following difference double sequence spaces defined by:

( ) ( ) ( ){ }2= = : ,mn mnZ x x w x Z∆ ∈ ∆ ∈

Where Z = L2, χ2 and ∆xmn = (xmn – xmn+1) – (xm+1n – xm+1n+1) = xmn 
– xmn+1 – xm+1n+ xm+1n+1 for all m,n ∈ . The generalized 
difference double notion has the following representation:

1 1 1 1
1 1 1 1=m m m m m

mn mn mn m n m nx x x x x− − − −
+ + + +∆ ∆ − ∆ − ∆ + ∆ , and also this 

generalized difference double notion has the following binomial 

representation: ( ) ,=0 =0
= 1

m mm m i jm
mn m i n ji j

x i j x+
+ +

  ∆ −   
  

∑ ∑ .

Let η = (ηmn) be a sequence of nonzero scalars. Then, for a sequence 
space E, the multiplier sequence space Eη, associated with the multiplier 
sequence η, is defined as:

( ) ( ){ }2= = : .mn mn mnE x x w x Eη η∈ ∈

The notion of sequence spaces associated with multiplier sequences 
was introduced by. Later on this notion was studied from different 
aspects by Tripathy and Sen [18], Tripathy and Hazarika [19] and 
many others [20].

Let η=(ηmn) be a sequence of nonzero scalars. Then, for a sequence 

space E, the multiplier sequence space Eη, associated with the multiplier 
sequence η, is defined as:

( ) ( ){ }2= = : .mn mn mnE x x w x Eη η∈ ∈

Definition and Preliminaries
Let n ∈  and X be a real vector space of dimension w, where n ≤ 

w. A real valued function 1 1 1( , , ) = ( ( ,0), , ( ,0))p n n n pd x x d x d x    on 
X satisfying the following four conditions:

(i) 1 1( ( ,0), , ( ,0)) = 0n n pd x d x   if and and only if 1 1( ,0), , ( ,0)n nd x d x  
are linearly dependent,

(ii) 1 1( ( ,0), , ( ,0))n n pd x d x   is invariant under permutation,

(iii) 1 1 1 1( ( ,0), , ( ,0)) = ( ( ,0), , ( ,0)) ,n n p n n pd x d x d x d xα α α ∈     

(iv) ( ) ( )1/

1 1 2 2 1 2 1 2( , ), ( , ) ( , ) = ( , , ) ( , , ) 1 < ;
pp p

p n n X n Y nd x y x y x y d x x x d y y y for p+ ≤ ∞    

(or)

(v) ( ) { }1 1 2 2 1 2 1 2( , ), ( , ), ( , ) := sup ( , , ), ( , , ) ,n n X n Y nd x y x y x y d x x x d y y y  

for 1 2 1 2, , , , ,n nx x x X y y y Y∈ ∈   is called the p product metric of the 
Cartesian product of n metric spaces is the p norm of the n-vector of 
the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p 
norm space is X =  equipped with the following Euclidean metric in 
the product space is the p norm:

( )( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 11 12 12 1 1

21 21 22 22 2 1

1 1

1 1 2 2

,0 ,0 ... ,0
,0 ,0 ... ,0

.
( ( ,0), , ( ,0)) = | ( ) | =

.

.
,0 ,0 ... ,0

n n

n n

n n E mn mn

n n n n nn nn

d x d x d x
d x d x d x

d x d x sup det d x sup

d x d x d x

 
 
 
 
 
 
 
 
 
 

 

Where xi = (xi1,…xin) ∈ n for each i = 1,2,…n.

If every Cauchy sequence in X converges to some L ∈ X, then X 
is said to be complete with respect to the p–metric. Any complete p–
metric space is said to be p–Banach metric space.

Let X be a linear metric space. A function w: X is called paranorm, if:

(1) w(x) ≥ 0, for all x ∈ X;

(2) w(–x) = w(x), for all x ∈ X;

(3) w(x+y) ≤ w(x) + w(y), for all x,y ∈ X;

(4) If (σmn) is a sequence of scalars with σmn → σ as m,n→∞ and (xmn) 
is a sequence of vectors with w(xmn–x) → 0 as m,n→∞, then w(σmnxmn – 
σx) → 0 as m,n→∞.

A paranorm w for which w(x) = 0 implies x = 0 is called total 
paranorm and the pair (X,w) is called a total paranormed space. It is 
well known that the metric of any linear metric space is given by some 
total paranorm by (Willansky, 1984).

η=(ϕrs) a nondecreasing sequence of positive reals tending to 
infinity and ϕ11=1 and ϕr+1,s+1≤ϕrs+1.

The generalized de la Vallee-Pussin means is defined by:

( ) 1= ,rs mnm I n Irs rsrs

t x x
ϕ ∈ ∈∑ ∑

Where Irs = [rs–λrs+1,rs]. For the set of sequences that are strongly 
summable to zero, strongly summable and strongly bounded by the de 
la Vallee-Poussin method.
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The notion of λ– double gai and double analytic sequences as 
follows: Let ( ) , =0

= mn m n
λ λ ∞

 be a strictly increasing sequences of positive 
real numbers tending to infinity, that is:

0 < λ00 < λ11 < …. and λmn → ∞ as m,n → ∞

and said that a sequence x = (xmn) ∈ w2 is λ–convergent to 0, called a the 
λ– limit of x, if ( ) 0 , ,B x as m nµ

η → →∞  Where:

( ) ( ) 1/1 1 1 1
, , 1 1, 1, 1

1= .m nm m m m
m n m n m n m n mnm I n Irs rsrs

B x xµ
η λ λ λ λ

ϕ
+− − − −

+ + + +∈ ∈
∆ − ∆ − ∆ + ∆∑ ∑

The sequence x = (xmn) ∈ w2 is λ–double analytic if ( ) < .sup B xµ
η ∞

If = 0mn mnlim x  in the ordinary sense of convergence, then:

( ) ( )( )1/1 1 1 1
, , 1 1, 1, 1

1 ! 0 = 0.
m nm m m m

rs m n m n m n m n mnm I n Irs rsrs

lim m n xλ λ λ λ
ϕ

+− − − −
+ + + +∈ ∈

∆ − ∆ − ∆ + ∆ + −∑ ∑  

This implies that:

( )

( ) ( )( )1/1 1 1 1
, , 1 1, 1, 1

10 = lim

! 0 = 0.

rsrs m I n Irs rsrs
m nm m m m

m n m n m n m n mn

lim B x

m n x

µ
η ϕ

λ λ λ λ

∈ ∈

+− − − −
+ + + +

−

∆ − ∆ − ∆ + ∆ + −

∑ ∑

which yields that limuvµµµµµ ( ) = 0uv mnlim xµ  and hence x = (xmn) ∈ w2 
is λ–convergent to 0.

Let f = (fmn) be a Mu-Orlicz function and ( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0 ,n p
X d x d x d x −

be a p–metric space, q = (qmn) be double analytic sequence of strictly 
positive real numbers. By w2 (p – X) we denote the space of all sequences 
defined over:

( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0 .n p
X d x d x d x −

The following inequality will be used throughout the paper. If 
( )10 = , = 1,2H

mn mnq supq H K max −≤ ≤  then:

{ }q q qmn mn mn
mn mn mn mna b K a b+ ≤ +                                    (5)

for all m,n and amn, bmn ∈ . Also ( )1,q Hmna max a≤  for all a ∈.

Let ( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0n p
X d x d x d x −

 be an p–metric space and 

let s(w2–x) denote the space of X–valued sequences. Let q = (qmn) be any 
bounded sequence of positive real numbers and f = (fmn) be a Musielak-
Orlicz function. We define the following sequence spaces in this paper:

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( )

2
1 2 1

2
1 2 1

, ,0 , ,0 , , ,0 =

= : , , , , = 0 ,

V
q

nfB p

qmn

mn rs mn n p

d x d x d x

x x s w x lim f B x d x d x d x

ϕ

µ
η

µ
η

χ −

−

 
  
  ∈ −    





( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( )

2
1 2 1

2
1 2 1

, ,0 , ,0 , , ,0 =

= : , ,0 , ,0 , , ,0 < ,

V
q

nfB p

qmn

mn rs mn n p

d x d x d x

x x s w x sup f B x d x d x d x

ϕ

µ
η

µ
η

−

−

 Λ  
  ∈ − ∞    





If we take fmn(x) = x, we get:

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( )

2
1 2 1

2
1 2 1

, ,0 , ,0 , , ,0

= = : , ,0 , ,0 , , ,0 = 0 ,

V
q

nfB p

qmn

mn rs mn n p

d x d x d x

x x s w x lim f B x d x d x d x

ϕ

µ
η

µ
η

χ −

−

 
  
  ∈ −    





( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( )

2
1 2 1

2
1 2 1

, ,0 , ,0 , , ,0 =

= : , ,0 , ,0 , , ,0 < ,

V
q

nfB p

qmn

mn rs mn n p

d x d x d x

x x s w x sup f B x d x d x d x

ϕ

µ
η

µ
η

−

−

 Λ  
  ∈ − ∞    





If we take q = (qmn) = 1, we get:

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( ){ }
2

1 2 1

2
1 2 1

, ,0 , ,0 , , ,0 =

= : , ,0 , ,0 , , ,0 = 0 ,

V

nfB p

mn mn n p

d x d x d x

x x s w x f B x d x d x d x

ϕ

µ
η

µ
η

χ −

−

 
  

 ∈ −   





( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( ){ }
2

1 2 1

2
1 2 1

, ,0 , ,0 , , ,0 =

= : , ,0 , ,0 , , ,0 < .

V

nfB p

mn mn n p

d x d x d x

x x s w x f B x d x d x d x

ϕ

µ
η

µ
η

−

−

 Λ  

 ∈ − ∞  





In the present paper we plan to study some topological 
properties and inclusion relation between the above defined 

sequence spaces. ( ) ( ) ( )( )2
1 2 1, ,0 , ,0 , , ,0

V
q

nfB p
d x d x d x

ϕ

µ
η

χ −
 
  



 and 

( ) ( ) ( )( )2
1 2 1, ,0 , ,0 , , ,0

V
q

nfB p
d x d x d x

ϕ

µ
η

−
 Λ  



which we shall discuss in this 

paper.

Main Results
Theorem 1

Let f = (fmn) be a Musielak-Orlicz function, q = (qmn) be a double 
analytic sequence of strictly positive real numbers, the sequence spaces

( ) ( ) ( )( )2
1 2 1, ,0 , ,0 , , ,0

V
q

nfB p
d x d x d x

ϕ

µ
η

χ −
 
  



 and,

( ) ( ) ( )( )2
1 2 1, ,0 , ,0 , , ,0

V
q

nfB p
d x d x d x

ϕ

µ
η

−
 Λ  



 are linear spaces.

Proof

It is routine verification. Therefore the proof is omitted.

Theorem 2

Let f = (fmn) be a Musielak-Orlicz function, q = (qmn) be a double 
analytic sequence of strictly positive real numbers, the sequence space.

( ) ( ) ( )( )2
1 2 1, ,0 , ,0 , , ,0

V
q

nfB p
d x d x d x

ϕ

µ
η

χ −
 
  



is a paranormed space 

with respect to the paranorm defined by:

( ) ( ) ( ) ( ) ( )( )( )1 2 1= , ,0 , ,0 , , ,0 1 = 0.
qmn

mn n p
g x inf f B x d x d x d xµ

η −

   ≤    


Proof

Clearly g(x) ≥ 0 for ( ) ( ) ( ) ( )( )2
1 2 1= , ,0 , ,0 , , ,0

V
q

mn nfB p
x x d x d x d x

ϕ

µ
η

χ −
 ∈   

  Since 
fmn(0) = 0, we get g(0) = 0.

Conversely, suppose that g(x) = 0, then:

( ) ( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0 1 = 0.
qmn

mn n p
inf f B x d x d x d xµ

η −

   ≤    


Suppose that ( ) 0B xµ
η ≠  for each m,n∈. Then 

( ) ( ) ( ) ( )( )1 2 1, ,0 , ,0 , , ,0 .n p
B x d x d x d x

ϕµ
η − →∞

 It follows that 

( ) ( ) ( ) ( )( )( )
1/

1 2 1, ,0 , ,0 , , ,0
Hqmn

mn n p
f B x d x d x d xµ

η −

   →∞    


 which is a contradiction. 

Therefore ( ) = 0.B xµ
η

Let:

( ) ( ) ( ) ( )( )( )
1/

1 2 1, ,0 , ,0 , , ,0 1
Hqmn

mn n p
f B x d x d x d xµ

η −

   ≤    


and

( ) ( ) ( ) ( )( )( )
1/

1 2 1, ,0 , ,0 , , ,0 1.
Hqmn

mn n p
f B y d x d x d xµ

η −

   ≤    


Then by using Minkowski’s inequality, we have:
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( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

1/

1 2 1

1/

1 2 1

1/

1 2 1

, ,0 , ,0 , , ,0

, ,0 , ,0 , , ,0

, ,0 , ,0 , , ,0 .

Hqmn

mn n p

Hqmn

mn n p

Hqmn

mn n p

f B x y d x d x d x

f B x d x d x d x

f B y d x d x d x

µ
η

µ
η

µ
η

−

−

−

  +    

  ≤ +    

      







So we have:

( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

1 2 1

1 2 1

1 2 1

= , ,0 , ,0 , , ,0 1

, ,0 , ,0 , , ,0 1

, ,0 , ,0 , , ,0 1

qmn

mn n p

qmn

mn n p

qmn

mn n p

g x y inf f B x y d x d x d x

inf f B x d x d x d x inf

f B y d x d x d x

µ
η

µ
η

µ
η

−

−

−

  + + ≤    
  ≤ ≤ +    

   ≤    







Therefore,

( ) ( ) ( ).g x y g x g y+ ≤ +

Finally, to prove that the scalar multiplication is continuous. Let λ 
be any complex number. By definition,

( ) ( ) ( ) ( ) ( )( )( )1 2 1= , ,0 , ,0 , , ,0 1 .
qmn

mn n p
g x inf f B x d x d x d xµ

ηλ λ −

   ≤    


Then:

( )

( ) ( ) ( ) ( )( )( )/
1 2 1

=

(( ) : , ,0 , ,0 , , ,0 1
qmnq Hmn

mn n p

g x inf

t f B x d x d x d xµ
η

λ

λ λ −

   ≤    


Where 
1= .t
λ Since ( )1, ,q supqmn mnmaxλ λ≤  we have:

( ) ( )
( ) ( ) ( ) ( )( )( )/

1 2 1

1,

: , ,0 , ,0 , , ,0 1

supqmn

qmnq Hmn
mn n p

g x max inf

t f B x d x d x d xµ
η

λ λ

λ −

≤

   ≤    


Theorem 3

(i) If the sequence (fmn) satisfies uniform ∆2– condition, then:

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2
1 2 1

2

1 2 1

, , ,0 , ,0 , , ,0 =

, , ,0 , ,0 , , ,0 .

V
q

nfB p

V
qB

g n p

B x d x d x d x

B x d x d x d x

α
ϕµ

µ η
η

µ ϕµη
η

χ

χ

−

−

 
  

 
  





(ii) If the sequence (gmn) satisfies uniform ∆2–condition, then:

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2

1 2 1

2
1 2 1

, , ,0 , ,0 , , ,0 =

, , ,0 , ,0 , , ,0 .

V
qB

g n p

V
q

nfB p

B x d x d x d x

B x d x d x d x

αµ ϕµη
η

ϕµ
µ η
η

χ

χ

−

−

 
  

 
  





Proof

Let the sequence (fmn) satisfies uniform ∆2– condition, we get:

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2

1 2 1

2
1 2 1

, , ,0 , ,0 , , ,0
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V
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V
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B x d x d x d x

B x d x d x d x

µ ϕµη
η

α
ϕµ

µ η
η

χ

χ

−

−

  ⊂  

 
  





To prove the inclusion:

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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1 2 1
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, , ,0 , ,0 , , ,0

, , ,0 , ,0 , , ,0 ,

V
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nfB p

V
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B x d x d x d x

B x d x d x d x

α
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µ η
η

µ ϕµη
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χ
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−
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let ( ) ( ) ( ) ( )( )2
1 2 1, , ,0 , ,0 , , ,0 .

V
q

nfB p
a B x d x d x d x

ϕµ
µ η
η

χ −
 ∈   



Then for all {xmn} with ( ) ( ) ( ) ( ) ( )( )2
1 2 1, , ,0 , ,0 , , ,0

V
q

mn nfB p
x B x d x d x d x

ϕµ
µ η
η

χ −
 ∈   



we have:

=1 =1
< .mn mn

m n
x a

∞ ∞

∞∑∑                     (6)

Since the sequence (fmn) satisfies uniform ∆2– condition, then:

( ) ( ) ( ) ( ) ( )( )2
1 2 1, , ,0 , ,0 , , ,0 ,

V
q

mn nfB p
y B x d x d x d x

ϕµ
µ η
η

χ −
 ∈   

  we get 

( )=1 =1
< ,

!
rs mn mn

mm n
mn

y a
m n

ϕ
λ

∞ ∞
∞

∆ +∑ ∑  by (Theorem 1).

Thus:

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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a B x d x d x d x

B x d x d x d x
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µ η
η

µ ϕµη
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ϕ χ
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−
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and Hence

( ) ( ) ( ) ( ) ( )( )2

1 2 1, , ,0 , ,0 , , ,0 .
V
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a B x d x d x d x
µ ϕµη

ηχ −
 ∈   



This gives that:

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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χ
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From this, we get:

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2
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V
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(ii) Similarly, one can prove that:

( ) ( ) ( ) ( )( )
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αµ ϕµη
η

ϕµ
µ η
η

χ

χ

−
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if the sequence (gmn) satisfies uniform ∆2– condition.

Proposition 1

If 0<qmn<pmn<∞ for each m and n, then:

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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Proof

The proof is standard, so we omit it.
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Proposition 2

(i) If 0 < infqmn ≤ qmn < 1 then

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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(ii) If 1 ≤ qmn ≤ supqmn < ∞, then
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µ η
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ϕµ
µ η
η

−

−
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Proof

The proof is standard, so we omit it.

Proposition 3

Let f' = (f'
mn) and f'' = (f''

mn) are sequences of Musielak Orlicz functions, 
we have

( ) ( ) ( ) ( )( )
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 Λ  
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Proof

The proof is easy so we omit it.

Proposition 4

For any sequence of Musielak Orlicz functions f = (fmn) and q = (qmn) 
be double analytic sequence of strictly positive real numbers. Then

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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η
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Proof

The proof is easy so we omit it.

Proposition 5

The sequence space ( ) ( ) ( ) ( )( )2
1 2 1, , ,0 , ,0 , , ,0

V
q

nfB p
B x d x d x d x c

ϕµ
µ η
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is solid.

Proof
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V
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  (i. e)
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V
q
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ϕµ
µ η
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 Λ ∞  



Let (αmn) be double sequence of scalars such that | αmn | ≤ 1 for all 
m,n∈×. Then we get:
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Proposition 6

The sequence space ( ) ( ) ( ) ( )( )2
1 2 1, , ,0 , ,0 , , ,0

V
q

nfB p
B x d x d x d x

ϕµ
µ η
η

−
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is monotone.

Proof

The proof follows from Proposition 5.

Proposition 7

If f = (fmn) be any Musielak Orlicz function. Then
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Thus ( ) ( ) ( ) ( )( )
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suppose that
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  which is 
a contradiction.
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Proposition 8

If f = (fmn) be any Musielak Orlicz function. Then

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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r s r s

rs rs

sup supϕ ϕ
ϕ ϕ≥ ≥∞ ∞

Proof

It is easy to prove so we omit.

Proposition 9

The sequence space ( ) ( ) ( ) ( )( )2
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not solid.

Proof

The result follows from the following example.
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 for all m,n ∈ .
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Hence
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 is not solid.

Proposition 10

The sequence space ( ) ( ) ( ) ( )( )2
1 2 1, , ,0 , ,0 , , ,0

V
q

nfB p
B x d x d x d x

ϕµ
µ η
η

χ −
 
  



 
is not monotone.

Proof

The proof follows from Proposition 9.

A sequence x = (xmn) is said to be ϕ– statistically convergent or sϕ 
–statistically convergent to 0 if for every ε > 0,

( ) ( ) ( ) ( )( )( )1 2 1|{ , ,0 , ,0 , , ,0 | } = 0
qmn

rs mn n p
lim f B x d x d x d xµ

η ε−
  ≥  



where the vertical bars indicates the number of elements in the enclosed 
set. In this case we write sϕ – limx = 0 or xmn0(sϕ) and sϕ = {x:∃0 ∈ : sϕ 
– limx = 0}.

Proposition 11

 For any sequence of Musielak Orlicz functions f = (fmn) and q = (qmn) 
be double analytic sequence of strictly positive real numbers. Then
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Proof
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  and ε > 0. 
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from which it follows that ( ) ( ) ( ) ( )( )2
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To show that ( ) ( ) ( ) ( )( )2
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strictly contain
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  We define x = (xmn) by 

(xmn) = mn

if rsrs mn rsϕ − + ≤ ≤   and (xmn) = 0 otherwise. Then:
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 and for every ε 

(0 < ε ≤ 1),
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qmn rs
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  as 

r,s →∞

i. e ( ) ( ) ( ) ( )( )2
1 2 10 , , ,0 , ,0 , , ,0 ,

V
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x s B x d x d x d x
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µ ηϕ η
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  where 

[]denotes the greatest integer function. On the other hand,

( ) ( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0
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i. e ( ) ( ) ( ) ( )( )2
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V
q
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x B x d x d x d x
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µ η
η
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Conclusion
Approximations results in Musielak Orlicz spaces are applicable 

in nonlinear partial differential equations. We proposed a generalized 
triple sequence spaces and discuss general topological properties 
with respect to a sequence of Musielak-Orlicz function. Our result 
generalizes and unifies the results of several author’s in the case of 
classical Orlicz spaces. One can extend our results for more general 
spaces.
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