The Producing Technology of Resistant Starch from Buckwheat Using Ultrasonic Treatment

Wang L* and Bai X2

*The College of Life Science, Yangtze University, Jingzhou, Hubei, China
2The First People’s Hospital of Jingzhou, Jingzhou, Hubei, China

Abstract
Resistant Starch (RS) has various functions in controlling the Glycemic Index (GI), lowering concentration of cholesterol and triglycerides, inhibiting fat accumulation, preventing colon cancer, reducing gall stone formation, maintaining intestinal tract healthy and enhancing the absorption of minerals. Elevated RS in food is an important and effective approach for public health. RS is also an important material for industries. In this paper, the producing technologies of resistant starch from buckwheat were investigated. The results showed that the optimum parameters for producing technology of resistant starch from buckwheat using ultrasonic treatment are ultrasonic treatment time is 20 min, ultrasonic power is 300 W, and ultrasonic frequency is 63 KHz, Solid-to-liquid ratio 1:8.

Keywords: Buckwheat; Resistant Starch (RS); Orthogonal design

Introduction
Resistant Starch (RS) is also called enzyme resistant starch, defined as the starch and starch degradation products which cannot be digested and absorbed in the healthy small intestine of human [1]. RS provides functional properties in controlling GI [2], lowering concentration of cholesterol and triglycerides [3,4], inhibiting fat accumulation [5], preventing colon cancer [6], reducing gall stone formation [7], maintaining intestinal tract healthy [8,9] and enhancing the absorption of minerals [10]. RS a novel insulin receptor sensitizer is benefited to diabetes, which can enhance insulin function and regulate blood glucose [11]. Elevated RS in food is an important and effective approach for public health. RS is also an important material for industries. Buckwheat (Fagopyrum esculentum) belonging to plants of the genus Polygonacea Buckwheat, is edible biologic medicine with relative high starch content, with various values of nutritional therapy health care [12].

The mechanism of RS formation is largely unknown. There are several factors affect the RS formation. It’s reported that RS content is positive related to AC [13,14]. Starch granule size and structure are related the RS content. Starch granule in potato is larger than that in cereals, the potato starch digested more slowly than that of cereals [15]. Starch Crystalline structure can be classified into A type, B type and C type, according X-ray scattering pattern. The digestibility of the starch with B types less than A type, C type in the middle [16]. The chain length of amylose and amylpectin is another major factor affect the RS formation. RS increase according Degree of Polymerization (DP) of amylose (from 10 DP to 610 DP) by hydrothermal treatment (2002.02) [24]. The optimization of the preparation process of buckwheat RS

Materials and Methods
Preparation of Buckwheat flour
Buckwheat was purchased from Jilin City. Buckwheat was grinded into flour using flour mill, then filtered using 200 mesh sieve.

Determination of RS content
RS content was measured according to AOAC method (2002.02) with a slight modification [24]. 100 ± 1 mg milled maize flour (only endosperm) were accurately weighed and placed directly into screw-cap tubes (16 × 125 mm). 500 μL water was added into each tube, then boiled in electric cooker for 20 min and at warm keeping status at 50ºC for 10 min. Tubes were taken out and cooled to room temperature. KCI-HCl buffer (pH=1.5) containing 6 IU/mg pepsin was added into each tube and the rice floury was ground and dispersed by a stirring rod, mimicking the chewing in mouth and warmed at 37°C for 1 h. Other procedures were carried out as described in the method AOAC (2002.02) [24].

The optimization of the preparation process of buckwheat RS
To optimize the preparation process of buckwheat RS, the major factors and their levels were determined according the effects of various factors (such as ultrasonic power, ultrasonic frequency, ultrasonic treatment time, heating temperature after ultrasonic treatment, Solid-to-Liquid ratio (S/L) using ultrasonic treatment) on RS content using ultrasonic treatments. The optimum preparation conditions of buckwheat RS were further determined using orthogonal test.

Copyright © 2017 Wang L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Results and Discussion

The effects of ultrasonic frequency on buckwheat RS content

The buckwheat starch was heated at 100°C for 20 min after using different ultrasonic frequency for 30 s with 1:2 solid-to-liquid ratio, then after storage at 4°C for 24 h, dried at 50°C for 18 h. The RS content of the dried buckwheat was analyzed. The optimum ultrasonic frequency is 40 KHz (Figure 1).

The effects of ultrasonic power on buckwheat RS content

The buckwheat starch was heated at 100°C after using different ultrasonic power for 30 s with 1:2 solid-to-liquid ratio, then after storage at 4°C for 24 h, dried at 50°C for 18 h. The RS content of the dried buckwheat was analyzed. The optimum ultrasonic power is 300 W (Figure 2).

The effects of ultrasonic treatment time on buckwheat RS content

The buckwheat starch was heated at 100°C after using 28 KHz ultrasonic power for different time with 1:2 solid-to-liquid ratio, then after storage at 4°C for 24 h, dried at 50°C for 18 h. The RS content of the dried buckwheat was analyzed. The optimum ultrasonic treatment time is 20 min (Figure 3).

Effects of heating temperature after ultrasonic treatment on buckwheat RS

The buckwheat starch was heated at different temperature after using 28 KHz ultrasonic power for 30s with 1:2 solid-to-liquid ratio, and then heated at different temperature after storage at 4°C for 24 h, dried at 50°C for 18 h. The RS content of the dried buckwheat was analyzed. The optimum heating temperature after ultrasonic treatment is 120°C (Figure 4).

The effects of solid-to-liquid ratio using ultrasonic treatment on buckwheat RS content

The buckwheat starch was heated at 100°C after using 28 KHz ultrasonic power for 30s with different solid-to-liquid ratio, then after storage at 4°C for 24 h, dried at 50°C for 18 h. The RS content of the dried buckwheat was analyzed. The optimum solid-to-liquid ratio using ultrasonic treatment is 1:6 (Figure 5).

RS processing orthogonal experiment

According the effects of individual factors on the RS contents, orthogonal experiments were conducted using microwave power, treatment time using microwave power, solid-to-liquid ratio and annealing time after microwave treatment as factors and RS content as index (Tables 1 and 2).
As the results shown in the Table 2, ultrasonic treatment time had the largest effect on RS content. Ultrasonic Power had the second largest effect on RS content. Ultrasonic frequency had the third largest effect on RS content. Solid-liquid ratio had the fourth largest effect on RS content. The optimum parameters for producing technology of resistant starch from buckwheat using ultrasonic treatment are D2A2B3C3, that is ultrasonic treatment time is 20 min, ultrasonic Power is 300 W, ultrasonic frequency is 63 KHz, Solid-liquid ratio 1:8. The sequence of effects on RS content: D>A>B>C.

Conclusion

The major factors on RS content using ultrasonic treatment are ultrasonic treatment time, microwave power, ultrasonic frequency, and solid-to-liquid ratio. The optimum parameters for producing technology of resistant starch from buckwheat using ultrasonic treatment are ultrasonic treatment time is 20 min, ultrasonic Power is 300 W, and ultrasonic frequency is 63 KHz, Solid-to-liquid ratio 1:8.

Acknowledgement

This work was supported by the PhD Start-up Fund of Natural Science Foundation under Grant 801100010121.

References