The Protective Effects of Erdosteine and N-acetyl Cysteine in Rats With Paracetamol Induced Hippocampal Tissue Damage

Anzel Bahadir1*, Süber Dikici2, Hayati Kandis3, Havva Erdem4 and Ismail Hamdi Kara5

1Department of Biophysics, Duzce University, Medical School, Duzce, 81620, Turkey
2Department of Neurology, Duzce University, Medical School, Duzce, 81620, Turkey
3Department of Emergency Medicine, Duzce University, Medical School, Duzce, 81620, Turkey
4Department of Pathology, Duzce University, Medical School, Duzce, 81620, Turkey
5Department of Family Medicine, Duzce University, Medical School, Duzce, 81620, Turkey

Abstract

This study was designed to examine the protective effects of N-acetyl cysteine (NAC) and erdosteine (ERD) on hippocampal tissue damage associated with paracetamol (acetaminophen) intoxication. Thirty female Wistar Albino rats were divided randomly into six equal groups: control; paracetamol (1 g/kg); paracetamol (1 g/kg) + ERD (150 mg/kg/day); paracetamol (1 g/kg) + NAC (140 mg/kg bolus, followed by 70 mg/kg); NAC control (140 mg/kg bolus, followed by 70 mg/kg) and ERD control (150 mg/kg/day), given orally in this study. In all the experimental groups, the protective effects of NAC and ERD were investigated by analysis of histopathology measurement on hippocampal tissues. Histopathological examination was described by neuronal degeneration, edema, and vascular congestion. Neuronal degeneration (p<0.01), edema (p<0.00) and vascular congestion (p=0.006) were increased by significant in paracetamol experiment group, when compared with EDR and NAC treatment groups. The use of ERD and NAC was significantly decreased the severity of histopathological changes, such as neuronal degeneration, edema and vascular congestion, after experimentally paracetamol-induced intoxicity in rat hippocampal tissues. Also, the results of this study have been indicated that NAC is more protective against paracetamol intoxicity than ERD in the tissues.

Keywords: Paracetamol; Erdosteine; N-acetyl cysteine; Hippocampal tissue; Rat

Introduction

Paracetamol (acetaminophen, N-acetyl-p-amino-phenol, APAP) acts in the central nervous system (CNS) and whatever the dose and the time point considered, its concentrations were very close in the various brain and spinal areas. Furthermore, APAP is able to cross the blood-brain barrier with a homogenous distribution in all brain areas [1]. APAP have a central antinociceptive effect that is accompanied by an increase in brain serotonin content in cortical membranes [2,3].

N-Acetyl cysteine (NAC), which is used as a mucolytic agent, is a thiol compound and a membrane-permeable precursor of glutathione, which interacts directly with intracellular oxidants. Also, NAC has the capacity to inhibit several inflammatory elements related to oxidant stress and is involved in the pathophysiology of inflammation [4,5].

Like NAC, erdosteine (N-carboxymethylthioacetyl-homocysteine thiolactone, ERD), which is a thiol derivate, has been developed as mucolytic drug. In previous studies, ERD has been proved as a protective substance against diverse toxic agents such as acetaldehyde, adriamycin, bromobenzene, cisplatin, cyclophosphamide, doxorubicin, halothane, isophosphamide, isoniazid, paracetamol and penicillic acid in several animal and human reports [6-11]. Because ERD metabolites include two blocked sulphydryl groups (SH), become available for free radical scavenging and antioxidant activity [12,13]. Additionally, several studies have been comparatively showed that protective and therapeutic effects of both ERD and NAC have been caused by paracetamol experimentally induced intoxication in different tissue damages [14,15].

To the best of our knowledge, the possible therapeutic and protective effects of ERD and NAC after paracetamol intoxication in brain tissues have not yet been investigated. For this reason, in this study were investigated the damage of rat hippocampal tissues after paracetamol intoxication and a therapeutic effects of two antioxidant agents (NAC and ERD) on the tissues.

Materials and Methods

Animals

Thirty female Wistar Albino rats, aged 6-7 weeks and weighing 200-230 g, were used and they were given a standard laboratory diet and water ad libitum. The rats individually housed in metabolic cages at a temperature of 22 ± 2°C, relative humidity of 50-60% and a 12-h light-dark cycle. Body temperature was maintained around 37 ± 0.5°C throughout the surgical procedure. The rats were cared for under a protocol approved by Local Ethics Committee and according to the Guide for the Care and Use of Laboratory Animals.

Treatment schedule

In the current study, we applied the methods of the previously published research of the Kandis et al. [14]. The rats were divided into the following six equal groups, composed of five rats each,

Group 1, control group: physiological saline (0.5 mL/rat) given
Group 2, paracetamol (1 g/kg), physiological saline (0.5 mL/rat) given
Group 3, paracetamol (1 g/kg) + ERD (150 mg/kg/day), physiological saline (0.5 mL/rat) given
Group 4, paracetamol (1 g/kg) + NAC (140 mg/kg bolus, followed by 70 mg/kg), physiological saline (0.5 mL/rat) given
Group 5, NAC control (140 mg/kg bolus, followed by 70 mg/kg), physiological saline (0.5 mL/rat) given
Group 6, ERD control (150 mg/kg/day), physiological saline (0.5 mL/rat) given

*Corresponding author: Anzel Bahadir (PhD), Department of Biophysics, Duzce University, Medical School, Duzce, 81620, Turkey, Tel: +90 505 758 26 61; Fax: 90 380 542 13 02; Phone: +90 380 542 14 16- 4148; E-mail: anzelbahadir@duzce.edu.tr (or) anzel78@hotmail.com

Received July 18, 2014; Accepted September 28, 2014; Published September 30, 2014


Copyright: © 2014 Bahadir A et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Histopathological analysis

Hippocampal tissues were rapidly dissected, and the tissue samples were fixed in Zenker solution for 24 h, processed by using a graded ethanol series, and embedded in paraffin for histopathological investigation. Fixed sections (5 µm thick slices) were cut and stained with hematoxylin and eosin (HE) for light microscopic examination. All animals were anesthetized by intramuscular (i.m) injection of ketamine hydrochloride (50 mg/kg, Ketalar; Eczacibasi-Farma, Turkey) and xylazine hydrochloride (Bayer AG- Leverkusen, Germany) after three days of treatment. Supplemental doses of drugs and chemicals were used as needed during surgical step. Brain tissue samples were obtained from all rats. Then the rats were killed by intraperitoneal (i.p) injection of a lethal dose ketamine hydrochloride.

Statistical analysis

All values were determinate by Statistical Package for the Social Science (SPSS) Version 11.5 (Inc., Chicago, IL, USA) software. Differences between means of the six groups were calculated by a one-way analysis of variance (ANOVA) test, followed by Bonferroni correction test for post-hoc multiple comparisons. A p value of < 0.05 was indicated as statistically significant.

Results

Histopathological analysis

Histopathological finding of hippocampal tissue samples were significantly different when compared with control (groups 1, 5 and 6) and the experimental (group 2) groups. These differences have been presented by Table 1 and Figure 1A and 1B. Also, Figure 2 represents histological photomicrographs of hippocampal tissues obtained from the all groups. Light microscopic examination has been revealed by normal neuronal structure in the control group (group 1) (Figure 1B).

When histopathological sections were evaluated by light microscopic examination, neuronal degeneration were found significantly (p< 0.01) higher in the paracetamol group (group 2) than NAC treatment (group 4), NAC control (group 5) and ERD control groups (group 6) (Figure 1A and 1B)). There was no edema in ERD control group (group 6), but there was significantly difference (p<0.001) by mild and moderate edema degrees in paracetamol group (group 2) when compared with other groups (Figures 1 and 2). Also, vascular congestion were significantly (p=0.006) more extensive occurred in the paracetamol group (group 2) than NAC control (group 5) and ERD control groups (group 6). However, although the significant differences (p=0.05) in degeneration and edema effects were not detected between ERD treatment (group 3) and NAC treatment groups (group 4), the vascular congestion effect was found to be increased ERD treatment group (group 3) when compared with NAC treatment group (group 4) (Figures 1 and 2, Table 1).

Consequently, treatments with ERD and NAC have been significantly reduced the effects of degeneration and edema, and vascular congestion in brain hippocampal tissues after the paracetamol induced intoxication. Also, the present study indicates that NAC is more protective against paracetamol toxicity than ERD (Table 1).

Discussion

Acute paracetamol intoxication cases occur frequently in human. When organ distributions of paracetamol concentration were researched, the concentration is the lowest in brain and while its concentration is the highest in liver. However, paracetamol concentration has not been significant statistical difference from kidney and brain in several rat studies [16,17]. Additionally, Sandrini et al. [2] have been reported that a full dose of paracetamol was active in frontal cortex, where in particular its antinociceptive activity, rather than the temporal–parietal cortex of rat brain. Although Hendrickson and Bizovi [18] indicated that paracetamol affected the central nervous system (CNS) by consuming glutathione, but they could not explained how the CNS is affected by acute paracetamol poisoning in their pre-study. Also, Blecharz Klin et al. [19] have been showed that therapeutic doses of paracetamol cause significant changes in neurotransmission with subtle changes concerning behavior and particularly spatial learning in rat brain structures.

Although previous studies have been reported that paracetamol can cause damages such as hepatic necrosis, acute tubular necrosis, acute renal failure, vascular congestion, vascular degeneration, sinusoidal dilatation, portal inflammation in renal and liver tissues [10,14,15], this study is the first preliminary study to demonstrate hippocampal tissue damages such as degeneration, edema and vascular congestion after overdose paracetamol administration. However, the effects of ERD and NAC have not been previously examined on the structure regulation of hippocampal tissue. Only it has been notified that NAC has been reduced the generation of lipid peroxidation products, locomotor hyperactivity and hippocampal neuron loss [20]. Also, several studies have been demonstrated that an important neuroprotective effect of ERD on neurological status of spinal cord or brain ischemia/ reperfusion in some animal models [21, 22].

In the present study, we evaluated the effects of NAC and ERD on the alterations of paracetamol-induced hippocampal damage which occurs neuronal degeneration, edema and vascular congestion in experimental rat model. Firstly, the hippocampal tissues were characterized by extensive degeneration, edema and vascular congestion after paracetamol intoxication (group 2). Then, our results
demonstrated that the use of ERD and NAC significantly decreased histopathological changes such as neuronal degeneration, edema and vascular congestion induced by paracetamol intoxication in rat hippocampal tissues (groups 3 and 4). Also, this study indicates that NAC is more protective against paracetamol toxicity than erdosteine in the tissues (group 4). According to these results, because of its antioxidant and anti-inflammatory properties, NAC may be suggested to decrease hippocampal damages after administration of overdose paracetamol.

In conclusion, we have demonstrated that a possible protective effects of ERD and NAC by semi-quantitative morphological assessment of hippocampal tissues in paracetamol induced intoxication. Our results suggest that ERD and NAC might be a new therapeutic agent for preventing paracetamol intoxication which may occur neuronal degeneration, edema, and vascular congestion in hippocampal tissues. Finally, these findings were put forward to the administration of NAC and ERD in attenuation of neuronal damage, especially hippocampal damage after paracetamol induced intoxication. Further studies are needed to elucidate the mechanisms of paracetamol induced intoxication and to investigate the direct and specific effects of these substances on hippocampal tissue regulation. However, clinical studies should be performed to investigate its possible effectiveness as an adjuvant therapeutic agent in treating human hippocampal damage.

Acknowledgment

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. The authors declare that there are no conflicts of interest, including specific financial interest, relationships, and/or affiliations relevant to the subject matter or materials included in this manuscript.

References


