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Abstract
Recent advances in molecular technology have facilitated a more thorough investigation of the human microbiome. 

These developments have allowed examination of associations between disease states and a person’s microbiome. 
While the majority of scientific literature has been focused on the microbial flora in the intestines, attention has recently 
been directed at the pulmonary microbiome and chronic disease states. Of particular interest is the microbiome’s effect 
on mechanical ventilation in trauma patients, where ventilator-associated pneumonia leads to significantly increased 
mortality rates. However, within the trauma population, many patients that exhibit the clinical symptoms of a pulmonary 
infection fail to culture or exhibit only “normal respiratory tract flora.” Herein, we discuss the current state of pulmonary 
microbiome research, risk factors, and future avenues of research involving the pulmonary microbiome as it relates to 
trauma patients.
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research in humans was primarily descriptive. These studies focused 
on samples or disease states that were relatively easy to sample. Among 
all these the region of the body that has received the most extensive 
characterization in research was the gut microbiome. These and 
subsequent studies have disproven many long held dogmas of the gut 
microbiome, including its diversity, abundance, and its contribution 
to clinical phenotypes. This extensive research on the gut provided the 
seed for additional hypotheses in other disease states and other areas 
of the body, including the contribution of the pulmonary microbiome 
to health. 

The early studies of the lung and pulmonary microbiome have 
already over turned the long-held dogma of the lung and pulmonary 
tract as a sterile environment. In retrospect, this should not have 
been surprising since the lung is constantly exposed to bacteria 
through the air. Efforts have continued to identify numerous bacterial 
members comprising a healthy pulmonary microbiome, as well as have 
investigated the alteration or dysbiosis of the lung microbiome under 
various conditions and disease states.

The Healthy Lung Microbiome
Several culture-independent studies on BAL samples illustrate 

that lungs are not sterile and reveal the existence of a core pulmonary 
bacterial microbiome in healthy lungs [7-9]. Microbes present in the 
lung were first considered to come from the upper respiratory tract. 
Microbial community overlaps were observed between BAL samples 
and samples from the upper airway. The ebb and flow of air in and 
out of the lungs likely results in a compositional continuum rather 
than a clearly demarcated line of separation between upper and lower 
respiratory tract. Nevertheless, the core microbiota in healthy human 
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Introduction
Trauma patients in the ICU exhibit a diverse array of clinical 

problems that relate to their injury [1]. As a response to injury, trauma 
patients have clinical biomarkers that are commonly out of the normal 
range of a healthy patient, even in the absence of infection. These 
biomarkers are typically used to detect when patients have an infection 
[2]. However, in the case of trauma patients it is increasingly difficult 
to identify when patients have infections based upon these biomarkers 
alone. This is especially true when identifying pulmonary infections 
and pneumonia in mechanically ventilated patients [3]. One of the risk 
scores utilized to determine when a trauma patient has a pulmonary 
infection is the Clinical Pulmonary Infection Score (CPIS) [4,5]. 
However, many of the parts that make up this score are normally out 
of range in trauma patients. This can make it difficult to identify and 
treat pulmonary infections and pneumonia in mechanically ventilated 
trauma patients. Criteria such as the CPIS are utilized to determine 
when a patient needs to have a bronchoalveolar lavage (BAL). The BAL 
is utilized to make a clinical assessment of whether or not a trauma 
patient has a pulmonary infection. Collected BAL samples are sent 
to a pathology lab for clinical diagnosis of what specific organisms 
are cultured from the BAL. The cultures are then used to detect and 
identify the presence of disease–causing microorganisms and, if growth 
is present, which antibiotics should be used to treat the infection based 
upon that organism’s antibiotic susceptibility. However, often there 
are clinical signs of infection in the pulmonary tract, but traditional 
culture-based techniques fail to identify an organism, or alternatively 
cultures are identified as “normal respiratory tract flora [6]”. This 
lack of detection and identification presents a persistent barrier to the 
proper diagnosis of respiratory infections and pneumonia in trauma 
patients. Without proper diagnoses, clinicians are unable to properly 
treat infections, which then can delay recovery or worsen the clinical 
outcome, potentially including mortality. 

In order to identify potential pathogens or define the infected state, 
it is first necessary to understand what constitutes “normal lung flora.” 
Recent advances in molecular technologies including phylogenetic 
microarrays and highly parallel sequence-by-synthesis methodologies 
(Next Generation Sequencing or NGS) have facilitated the robust 
examination of the microbiome in both the patient environment as 
well as different organ systems. The majority of the early microbiome 
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lungs has been found to be comprised of a diverse assemblage of bacterial 
genera including species of Streptococcus, Pseudomonas, Prevotella, 
Fusobacterium, Haemophilus, Veillonella, and Porphyromonas [7]. 
Debate continues on whether the organisms present in the lower 
respiratory tract truly represent a resident microbiome or are transient 
contaminations from air and the upper respiratory tract, however, the 
presence of microbes in the lower lung in the disease state is far less 
controversial (reviewed in Nagalingam et al.) [10]. 

Lung Microbiome in Chronic Disease states
Most studies on the lung microbiome have investigated conditions 

within the chronic disease state, such as in patients with AIDS, asthma, 
cystic fibrosis, and chronic pulmonary obstructive disorder (COPD). 
It is possible that these disease conditions may serve as models for 
trauma patients, whose physiological systems are already under 
stress from other conditions. For example, a variety of pathogenic 
and opportunistic infections are frequently observed in HIV-infected 
patients due to their impaired immune system. 16S rRNA-based 
phylogenetic analysis from deep sequencing projects have shown that 
HIV infected and uninfected individuals had substantial differences 
between their lung microbiota. Compared with uninfected individuals, 
14 bacterial genera from Proteobacteria increased in HIV infected 
patients, while 12 different bacterial genera increased in the uninfected 
individuals [11]. Another study showed that the bacterium Tropheryma 
was more frequently distributed in HIV infected individuals than in 
uninfected individuals [12].

The diagnosis of asthma actually spans a continuum of diseases 
subdivided into at least 11 different phenotypes ranging from non-
allergic asthma, to allergic bronchopulmonary aspergillosis, to the 
virus-induced wheeze of bronchitis, with several in between [13]. The 
microbiota associated with asthma includes bacteria, viruses, and fungi 
[14,15]. A study by Hilty and colleagues analyzed bronchial scrapings 
and BAL from adult and child asthmatics and found that both adult and 
child asthmatics were colonized by Proteobacteria such as Haemophilus 
spp., Moraxella spp., and Neisseria spp. These organisms were in 
contrast to Provetella spp. and Bacteroidetes, which were dominant in 
control non-asthmatics adults and children, respectively [16]. Several 
studies have shown that infection with atypical bacteria, specifically 
Chlamydophilia pneumoniae and Mycoplasma pneumoniae, are related 
to asthma pathogenesis [17]. Just as adult and child asthmatics have 
similar microbial composition, mild and severe asthmatics also have 
similar bacterial colonization. Mild asthmatics not only are inhabited 
by Proteobacteria more frequently than non-asthmatics, but sputum 
samples also prove to exhibit more bacterial diversity [18].

Viruses such as the human rhinovirus (HRV), respiratory 
syncytial virus (RSV), and Influenza A virus lead to approximately 
80% of asthma exacerbations. In addition to exacerbation of asthma 
in previously diagnosed patients, these viral infections in infants may 
lead to predisposition for the development of asthma phenotypes 
[19,20]. Fungi are also a factor of the lung microbiota that is affected 
by respiratory conditions such as asthma. An investigation of 
sputum samples from asthmatics and healthy individuals found 
that out of 136 fungal species identified by pyro sequencing, 90 were 
more common in samples from asthmatic patients than in controls. 
Malassezia pachydermatis, Psathyrells candolleana, and Termitomyces 
clypeatus are a few examples of fungi found at a higher percentage in 
asthmatic sputum, while Eremothecium sinecaudum, Cladosporium 
cladosporoides, and Vanderwaltozyma polyspora were found more in 
sputum from healthy patients [15].

Chronic obstructive pulmonary disease (COPD) is defined as “a 
common preventable and treatable disease, characterized by persistent 
airflow limitation that is usually progressive and associated with an 
enhanced chronic inflammatory response in the airways and the lung 
to noxious particles or gases” [21]. COPD is currently the third-most 
common cause of death in the United States of America with smokers 
having the highest-risk for developing the disease [22]. The lung 
microbiome associated with COPD has been studied in individuals 
with varying degrees of severity including those who are considered 
stable and those with an acute exacerbation [23,24]. Microorganisms 
found in the bronchial trees in COPD patients may be classified into 
two categories: potentially pathogenic microorganisms (PPM), which 
are known to cause respiratory infection and Non-PPMs which are 
oropharyngeal or gastrointestinal flora that are not usually associated 
with respiratory infections in non-immunocompromised individuals. 
PPMs include Pseudomonas aeruginosa, members of Enterobacteriacae, 
Haemophilus spp., Staphylococcus aureus, Streptococcus pneumonia, 
and Moraxella catarrhalis. Examples of non-PPMs include: 
Streptococcus viridans group, Candida spp., Corynebacterium spp., and 
Neisseria spp., along with others [25]. COPD patients with no current 
clinical signs or symptoms are referred to as stable. A study by Cabrera-
Rubio and colleagues investigated six stable individuals with moderate 
COPD. Sputum, tissue, bronchoalveolar lavage (BAL) and bronchial 
aspirate samples were collected and analyzed by PCR amplification of 
the 16S rRNA genes and pyrosequencing [26]. Each sample exhibited 
diversity of over 500 species and between 80 and 140 genera per patient. 
The most common phyla identified were Proteobacteria, Bacteroides, 
Actinobacteria, Firmicutes with Streptococcus, Prevotella, Moraxella, 
Haemophilus, Acinetobacter, Fusobacterium, and Neisseria making up 
approximately 60 percent of total sequences [26]. A larger scale study 
found similar genera in COPD stable patients including Haemophilus 
influenza, Streptococcus pneumonia, Moraxella catarrhallis, 
Enterobacteria spp., Pseudomonas aeruginosa, and Staphylococcus 
aureus. In contrast to the Cabrera study, only a minority of individuals 
studied were found to have bronchial colonization with the percentages 
increasing from 0% in those with mild COPD to a peak of 45% in 
patients with severe disease [27]. This difference in amount of species 
identified between studies may be attributed to the mode of analysis 
as the study was done with traditional selective media culturing rather 
than advanced molecular culture-independent techniques. Specific 
types and strains of PPMs differ between patients and over time within 
individuals with stable moderate COPD. Comparisons of baseline 
sputum and 9 month follow-up samples showed that a persistent PPM 
strain was only found in approximately 15% of cases [28]. In addition 
to bacteria, filamentous fungi are also found to inhabit the stable 
COPD patient, predominantly Aspergillus fumigatus and Penicillium 
spp. The prevalence of these filamentous fungi is not altered during 
acute exacerbation [29]. However, during an acute exacerbation, 
the lung microbiome of COPD patients changes [24]. Bacterial 
families such as Pseudomonaceae, Pasturellaceae, Helicobacteraceae, 
Enterobacteriaceae, Comamonadaceae, Burholderiaceae, and 
Alteromondaceae were found in endotracheal aspirates from patients 
with severe exacerbation leading to a stay in an ICU. Bacterial 
diversity in each person is associated with the types of bacteria found 
[30]. Pseudomonas aeruginosa and Haemophilus influenza are most 
commonly found during exacerbations and their presence correlates to 
greater respiratory impairment [31].

Comorbidities are known confounders for the recovery from 
trauma. In addition to comorbidities like COPD and asthma that affect 
the pulmonary microbiome, the effect of smoking on the pulmonary 
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microbiome has been investigated in healthy individuals. Upper airway 
microbial communities from nonsmokers was significantly less diverse 
than smokers [9]. However, some other studies reported that lung 
microbial community composition of healthy smokers was similar 
to that of healthy nonsmokers [7,32]. How this variation in diversity 
and microbial community composition will affect the recovery from 
trauma, especially in mechanically ventilated patients, remains to 
be determined. It is foreseeable that the management of pulmonary 
microbiome in mechanically ventilated trauma patients may differ 
based upon risk factors that alter a person’s core microbiota (i.e. 
COPD, asthma, smoking, etc.)

NGS vs. Culturing in Identification of Lung Infections
One pyrosequencing study on patients with lower respiratory 

tract infections revealed complicated microbial communities in the 
sputum samples including Streptococcus, Staphylococcus, Mycoplasma, 
Haemophilus, Moraxella and etc. [33]. However the parallel cultural 
based tests were unable to detect some of the causative pathogens. 
Similarly, Huebinger et al. investigated BAL samples from ventilated 
patients after traumatic injury using culture-independent NGS 
techniques and detected more bacteria species than the standard culture 
methods [34]. In fact, in only one case (n=12) was the same organism 
identified as the predominant bacterium in both NGS and standard 
culture assays. Interestingly, the bacterial diversity measured by NGS 
was positively correlated with the number of days patients spent on a 
ventilator. However, such a correlation was not observed with culture-
dependent tests. They also reported that antibiotic treatment has no 
significant effect on the number of bacterial species detected in the 
lung. 

Risk Factors Contributing to Infection
There are other risk factors that may contribute to pulmonary 

infections in mechanically ventilated patients. The timing and location 
of intubation (pre-hospital vs. hospital) have been examined as risk 
factors for the development of VAP. Early intubation has been identified 
as a potential source of microbial contamination and increasing the 
risk of developing pneumonia [35]. Several retrospective analyses of 
pre-hospital intubations have attempted to determine if the location 
of intubation was a risk factor for the development of pneumonia [36-
38]. A study examining pre-hospital versus emergency department 
intubations found no significant difference in the development of VAP 
[38]. However, other analyses that compared pre-hospital, emergency 
department and inpatient intubations found a reduced incidence of 
pneumonia with inpatient intubations. In this study, patients that 
received urgent intubation (pre-hospital or emergency department) 
were less severely injured and younger compared to the in-patient 
intubation group [36]. The site of intubation has also been associated 
with the type of bacterial colonization found within the lower airways 
[35,37]. Endogenous colonization is when PPMs carried in the throat 
migrate to the lower airways. In contrast exogenous colonization is 
colonization of the lower respiratory tract with PPMs not in the throat; 
these could be either community or hospital acquired. Endotracheal 
ventilation is associated with endogenous colonization, while ventilation 
via a tracheotomy more commonly results in exogenous colonization 
[39]. Method of ventilation is also a risk factor for respiratory infection. 
Invasive mechanical ventilation (IMV) is associated with higher risk of 
nosocomial respiratory infection than Noninvasive ventilation (NIV). 
However, NIV failure leading to the need for more invasive intervention 
is associated with airway colonization of non-fermenting Gram-
negative bacilli prior to ventilation and should be taken into account 
when predicting NIV outcome [40]. Ventilator bundles are another 

way to reduce the occurrence of ventilator-associated pneumonia 
(VAP). The Institute for Healthcare Improvement developed a bundle 
including four evidence based practices that were shown to decrease the 
risk of VAP. The bundle components are: 30-45 degree elevation of the 
head of the bed, daily “sedation vacation” and assessment of readiness 
to extubate, peptic ulcer prophylaxis, and deep venous thrombosis 
prophylaxis. The use of bundles has been found in several studies to 
decrease the incidence of VAP, however some studies were found to 
have flaws [41]. Bundle components are not finite and the traditional 
four component system can be altered to include/exclude components. 
Other components that may be added include oral care with antiseptic 
solution, use of NIV whenever possible, and sub-glottic suctioning 
among others [42,43]. Recently, Croce and colleagues conducted a 
study using trauma patients admitted to the ICU of six Level I Trauma 
Centers. This study found that in a study of 630 patients, development 
of VAP was independently associated with the male sex and severity of 
chest injury and the use of bundles had no involvement [44].

Oral Care
A connection has been found between the oral cavity and lung 

infections; poor oral health can contribute to an increased risk of 
developing pneumonia especially in high risk populations such as 
mechanically ventilated individuals [45]. One crucial factor in reducing 
the risk of VAP development is reducing PPM colonization of the 
oropharyngeal cavity. Antiseptics and antimicrobial peptides such 
as chlorhexidine (CHX) and colistin (COL) have been used for oral 
decontamination and have been shown to significantly decrease the 
risk of VAP by treating with either CHX alone or in conjunction with 
COL when applied to the oral cavity every six hours [46]. Success of an 
oral care regimen may be affected by who performs the task. A study by 
Arroliga and colleagues found that when chlorhexidine gluconate was 
administered by respiratory therapists who were comfortable dealing 
with the oral endotracheal tube, adherence increased approximately 
three times from when oral care was administered by a nurse, this 
phenomena possibly contributed to the decrease in VAP cases [47]. 
Several studies have been conducted to assess the effect of tooth 
brushing in mechanically ventilated individuals on VAP incidence. A 
compilation of six studies with proximately 1,400 patients found that 
tooth brushing showed a trend for reduced risk of VAP; however this 
trend was only a significant decrease in one study [48]. The use of oral 
and parenteral antibiotics to reduce VAP is controversial, while studies 
have shown that selective decontamination of the digestive tract (SDD) 
may reduce VAP and mortality in ICU patients, there is a fear that 
administration of broad-spectrum antibiotics may lead to resistance 
[49]. A large amount of equipoise relative to SDD and its benefits to 
mechanically ventilated patients exists [50,51]. With the conflicting 
results from SDD and the worries about increasing the prevalence 
of antibiotic resistant bacteria, recent attention has been focused on 
using probiotics as a prophylaxis for the development of VAP [52-
55]. In a clinical trial, the administration of a probiotic was able to 
significantly reduce the incidence of microbiologically confirmed 
VAP in mechanically ventilated patients [54]. Although different 
in their approach, the targeting of the gut microbiome by SDD and 
probiotics allude to the importance that gut microbiome may play in 
the development and/or prevention of VAP.

Conclusions
While many questions remain, the organisms that make up the 

lung microbiome have begun to be elucidated. Investigations of disease 
states and their correlation to various forms of dysbiosis shed light on 
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the important players not only of pulmonary disease, but also those 
possibly involved in the promotion of health. Improper application of 
antibiotics may actually worsen lung infection, presumably by removal 
of beneficial organisms [56]. This phenomenon has precedent in the 
gastrointestinal tract, where long-term antibiotic usage can lead to 
colonization of pathogenic Clostridium difficile resulting in pseudo 
membranous colitis. Interestingly, new treatments for the latter by fecal 
transplantation have shown dramatic effects [57,58]. This technique is 
already likely to give way to more targeted bacteriotherapy approaches 
using a defined bacterial consortium [59]. Beyond this simple analogy, 
it has also been well established that the health of the gut influences the 
function of other organ systems, including the lungs. Communication 
occurs by virtue of immunomodulatory interactions between gut 
microbes and the gut mucosa, and the subsequent distribution of 
immune cells throughout the body [60]. These effects have implications 
for COPD and asthma [61], as well as respiratory infection [62]. 

It would seem that the lung is a more hospitable environment for 
fungi than the mostly anaerobic gut; however, few deep sequencing 
studies have examined the fungal component of the lung. This is 
surprising given the variety of pulmonary fungal diseases known to 
exist [29,63]. One example, Valley Fever (coccidioidomycosis), is of 
increasing concern in the US [64]. A similar dearth of data exists for 
the pulmonary “viriome.” Interestingly, recent work with bacterial 
viruses (bacteriophage) inhabiting the mucosal surfaces of the upper 
respiratory tract led the authors to suggest that surface-associated 
bacteriophage may serve a non-host-derived immune function [65].

Critical to future research, not to mention medical diagnostics and 
treatment, is the apparent lack of correlation between molecular-based 
identification (e.g. 16S rRNA gene sequence) and traditional, culture-
based techniques [33,34]. The latter still serves as the gold standard 
in medicine, and a necessary component in the fulfillment of Koch’s 
postulates. By contrast, microbial ecologists have dealt with “the Great 
Plate Count Anomaly” for years [66]. Simply put, it states that in any 
particular environment roughly 100 times more bacteria can be seen 
under a microscope than can be grown on a petri dish. Moreover, it is 
also well known that several entire phylogenetic divisions of bacteria 
lack a single, cultivated member. The reasons for this are many and 
complex, but often involve unknown nutritional requirements. Given 
the ratio of microbial species to microbiologists, the anomaly is not yet 
in danger of being resolved. It would therefore be naïve to assume that 
all pathogens of clinical importance have been cultivated and studied 
in pure culture. Application of molecular techniques, albeit with their 
own inherent limitations, will provide valuable insight into what 
organisms are still missing best practices for their exclusion in clinical 
settings, elucidation of what constitutes a “healthy” lung microbiome, 
and a deeper understanding of how these organisms promote or resist 
disease. 
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