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Introduction
Quantum parallelism is a phenomenon that Nature herself 

seems to be suggesting as a means to getting around repetitive 
chores of forbidding duration. It is the cornerstone of most if 
not all interesting quantum computing schemas and the main 
factor responsible for computational speedups of some quantum 
algorithms, e.g. Shor’s pioneering integer factorization algorithm, 
[1]. Arguably, quantum parallelism may be so distinct a feature 
of quantum algorithms that the efficiency some of them provide 
will remain unachievable within the Church-Turing’ian model of 
computation [2,3].

In this article we explore possible advantages of some quantum 
structures deemed analogous to the classical sieve of Eratosthenes. The 
main idea is to set a bipartite quantum system in a state of the form 
Σalk|l〉 k〉 with amplitudes alk nonzero only if k|l (i.e. l can be divided by 
k without remainder). We refer to such states as Eratosthenian states 
or, simply, E-states. If we were skilled in the art of creating E-states 
with good control they could be used for efficient integer factorization. 
Suppose we wanted to find a divisor K of N, where N is a number 
with nlog N bits (in binary representation). All we would have to 
do is implement an E-state with only a polynomial in n quantity of 
comparable-magnitude amplitudes alk≠0, including aNk ≠0. If such a 
state were created we would be able to find the factor K of N with only 
a polynomial in n number of trials. Note that for a construction of such 
a state K need not be known a priori. Instead, it would suffice to ensure 
that the state is an E-state and that its nonzero amplitudes would have 
the first index concentrated near N, which is much more generalist a 
description. The challenge is to find ways of implementing such states. 
In Section 3 we propose several ways of implementing E-states on a 
quantum computer. Unfortunately all the methods we have found 
thus far result in a number of nonzero amplitudes that is exponential 
in n. However, it is not clear if this should be inevitable. Is there a 
fundamental constraint preventing successful realization of E-states 
with amplitudes concentrated in small areas of interest? For now this 
is an open question. A sceptic might argue that perhaps the whole idea 
should be dismissed as backward, given that a superior algorithm is 
already known—namely, the algorithm of Shor. However, we take an 
opposing view. Indeed, we find the concept to be intriguing for at least 
these three reasons: First, we do not exclude the possibility that future 
research could bring a discovery of a method enabling construction of 

very rarefied E-states with only a polynomial in n number of nonzero 
amplitudes placed in targeted places. Alternatively, in time we may be 
able to understand the fundamental reasons why this is impossible or 
intractable, e.g. by finding arguments for uncomputability of such states 
or at least a revealing constraint on the required physical resources. 
Second, as demonstrated in subsection 3.4, the concept of E-states 
enables implementation of the Dirichlet multiplication on a quantum 
computer. This new algorithm is interesting in its own right. Third, 
as shown in Subsection 2.2 the set of E-matrices (a notion slightly 
more general than that of E-states, the latter necessarily requiring 
normalization) forms a noncommutative ring, which extends the 
classical Dirichlet ring. We feel that an occurrence of a fundamental and, 
to our knowledge, entirely new algebraic structure further strengthens 
the case for E-states.

It is one of the conclusions reached in this paper that the algebra 
of the Dirichlet polynomials — i.e. objects of the type ,s

na n s− ∈∑  , 
where the sum is finite — may be handled by a quantum computer. 
This extends our earlier work in which we demonstrated that the 
Dirichlet polynomials may be efficiently manipulated on a classical 
computer. In both cases the manipulation of Dirichlet polynomials 
is enabled by their matrix representation (which also extends to the 
infinite Dirichlet series). This fact has numerous practical applications 
[4-6].

Eratosthenian Matrices and Eratosthenian Quantum States

E-matrices

Consider a matrix A=[ank], and either n,k∈{1,2…N} or both indices 
run over the entire set of positive integers . We will say that A is 
Eratosthenian (an E-matrix for short) if and only if.

0 | .nka k n≠ ⇒

When written explicitly an E-matrix assumes the form
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Abstract
We introduce and examine quantum states of a special kind, referred to as E-states, whose properties are both 

structurally and functionally analogous to the sieve of Eratosthenes. More broadly, the concept of an E-state is related 
to a certain noncommutative extension of the Dirichlet ring, also discussed here for the first time. Furthermore, we 
demonstrate that E-states can be implemented on a universal quantum computer and, as a particular application, we 
construct an algorithm which implements the Dirichlet multiplication of sequences on a quantum computer. We also 
discuss the potential applicability of E-states to the problem of integer factorization although, we haste to add, we 
are not aware at present of the possibility of using this approach to obtain algorithms of sub-exponential complexity.
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where the entries represented by centred dots are necessarily zeros, and 
only if k|n the entry ank may be nonzero. If an E-matrix E is N-by-N, we 
write E∈ N and if it is infinite, extending indefinitely to the right and 
down, we write E∈ ∞. Note that the number of nonzero elements in 
the n’th row of an E -matrix is at most d(n) (i.e. the number of divisors 
of n). For E∈ N the overall number of nonzero entries is at most 

( ) = (1) (2) ( ) = ( log )N d d d N O N Nσ + + + , [7].

It is demonstrated in Subsection 2.2 that every N, N∈{2,3,4…}∪{∞}, 
is a ring with respect to the regular matrix addition and multiplication. 
We also point out that every N contains a nontrivial commutative 
subring. To see this we introduce the following definition. Namely, 
we say that an E-matrix is a Dirichletian matrix (D-matrix for short) 
if ank=αn/k for a sequence[α1, α2…] which may be finite or infinite. We 
let N, N∈{2,3,4…}∪{∞} denote the set of all N-by-N D-matrices. It is 
easily seen that N is a commutative subring of N. Also, it is known, 
see [6], that ∞ is isomorphic to the Dirichlet ring, i.e. the ring of 
infinite sequences with component-wise addition and the Dirichlet 
multiplication1

/
: |

( ) = .n n d d
d d n

α β α β∑                     (2)

Therefore, ∞ furnishes a noncommutative extension of the 
Dirichlet ring.

E-matrices form a noncommutative ring

Readers who are interested only in the quantum-computing 
applications of E-matrices may skip this subsection.

Theorem 2.1: Let N∈{2,3,4…}∪{∞}.N is a ring with respect to the 
operations of matrix addition and multiplication. The ring has a unity 
given by the identity matrix I. For A,B∈N, AB=I if and only if BA=I. 
Moreover, A∈N has an inverse (in N) if and only if all the diagonal 
entries of A are nonzero.

Proof: It is obvious that N is a group with respect to matrix addition. 
Furthermore, the identity matrix clearly is the unit of multiplication. 
Next, we verify that the product of two E matrices is an E-matrix.
Indeed, for A,B∈N let [cnk]=C=AB. We have

: | : | |
= = = .nk nl lk nd dk nd dk

l d d n d k d n
c a b a b a b∑ ∑ ∑                  (3)

(Here,k|d|n is used as shorthand for: k|d & d|n.) Thus, for the right-
hand side sum to be nonzero at least one of the terms must be nonzero, 
which implies k|n, i.e. C is an E-matrix.

It follows from (3) that if A,B∈N and AB=I, then annbnn=1. Thus, for 
a matrix A∈ N to have a left or right inverse in N it is necessary that all 
its diagonal entries be nonzero. Next, let A=[ank]∈ N and ann≠0 for all 

1Note that N with N finite inherit the Dirichlet multiplication with obvious 
modifications. These are the only objects that one can hope to implement 
numerically.

n. We will construct B∈ N such that AB=I. Indeed, suppose:

: | |
= ,nk nd dk

d k d n
a bδ ∑                   (4)

Where δnk∈{0,1} is the Kronecker delta. This determines the 
diagonal entries of B, namely, bnn=1/ann for all n. In addition, if k|n, k<n, 
then (4) implies:

: < , | |

1= .nk nd dk
d d n k d nnn

b a b
a

− ∑                    (5)

Note that (5) determines bnk via bmk (k|m) with m<n. This furnishes 
a recurrence formula for the off-diagonal entries of B that is the right 
inverse of A. If A is finite it is clear that B is also the left inverse, i.e. 
BA=I. Therefore, in the rest of the proof we assume that A is infinite. We 
will find its left inverse C∈ N, i.e. CA=I. As before, assume:

: | |
= .nk nd dk

d k d n
c aδ ∑                    (6)

It follows that cnn=1/ann for all n. Furthermore, if k<n, k|n, (6) 
implies:

: > , | |

1= .nk nd dk
d d k k d nkk

c c a
a

− ∑                 (7)

This gives recurrence for cnk if the indices are suitably ordered. 
Namely, if l|m and k|n we say (m,l)(n,k) if either m<n or m=n and 
l>k. Observe that in (7) cnk is determined via cnl with (n,l)(n,k). Thus 
construction by recurrence yields C such that CA=I. Finally, note that 
C=CI=CAB=IB=B , i.e. the left and the right inverses of A are equal. 
This completes the proof.

Corollary 2.1: The ring N, N∈{2,3,4…}∪{∞}, is not local.

Proof: In light of Theorem 2.1 we see that the set of non-invertible 
elements in N (N>2) or ∞ is not additively closed. Indeed, the sum of 
two E matrices each with some zeros on the diagonal can yield a matrix 
whose all diagonal entries are all nonzero. The claim then follows from 
Theorem 7.1.1 in [8].

Remark 1: Note that the set of all matrices in N (or ∞) with a zero 
column (resp. zero row) is a left (resp. right) ideal. The fact that a ring 
is not local means that the set of non-invertible elements is not a two-
sided ideal. Moreover, neither of the rings has a largest proper left or 
right ideal, [8].

Remark 2: Note that the recurrence formulas (5) or (7) yield the 
inverse matrix by filling up consecutively increasing blocks. This can be 
viewed alternatively in the following way. A matrix A∈ N has a block 
structure as follows:

1

1 , 1

0

, with   and | .
0
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In such a case A-1A=I is equivalent to the following set of constraints:

: | |
= | .k kn nN

k n k N
x a for all n such that n Nδ∑                  (8)
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Let X=[x1,…xd,….xN] be the vector whose entries are xd with d|N in 
the natural order. Observe that (8) has the form XM= [0,…1] where M is 
a suitable upper triangular d(N)-by-d(N) matrix, and 

|

det = 0nn
n N

M a ≠∏ . 
Therefore X=[0,…1]M-1 is the unique solution of (8).

Quantum E-states

Consider a pair of quantum systems which, when in isolation, 
have the dynamics determined by the Hamiltonians Hi :i→i 
(i=A,B), where i represent the respective Hilbert-spaces of states. Let 

| = |i
i i n iH n E n〉 〉  denote the eigenbasis induced by Hi, i.e. | = |i

i i n iH n E n〉 〉 . 
For our purposes it is necessary to assume that 

1
i i
n nE E +< , so that all the 

eigenspaces of Hi are 1-dimensional. When the mutual isolation of the 
quantum systems at hand is violated, the pair need to be considered as 
a composite (more specifically, bi-partite) system. Now, the individual 
states no longer hold any meaning and are superseded by a composite 
state | A BΨ〉∈ ⊗   whose dynamics, in the simplest possible case2, is 
determined by the composite system Hamiltonian,

= : .comp A B A B A B A BH H I I H⊗ + ⊗ ⊗ → ⊗                   (9)

 Suppose the composite system is initialized in the state,

2( , )

| = | | ,E nk A B
n k

a n k
∈

Ψ 〉 〉 〉∑


                 (10)

Where E=[ank] is an E-matrix with the Hilbert-Schmidt 
norm ( )1/22= = | | = 1H S E nkE a− Ψ ∑    . The Schrödinger dynamics 

| = |compi HΨ〉 Ψ〉  with the initial condition Ψ(0)=ΨE amounts to a 
separable evolution of the coefficients and so | ( ) = ( )| |nk A Bt a t n kΨ 〉 〉 〉∑ , where 

( ) = exp[ ( ) ]A B
nk nk N ka t a i E E t+ . This means that if |Ψ(t)〉 is represented 

in the |nA〉|kB〉 basis via an E-matrix at one time, it will remain to be 
represented by an E-matrix for all times. It is therefore justifiable to call 
an evolving state as this an E-state. Since time evolution of the phase 
factors is inconsequential for the discussion that follows we will make 
no further reference to it.

Quantum measurements and integer factorization

Suppose an E-state |Ψ(E)〉 has been prepared in such a way 
that ank≠0 ⇒ k|n. Suppose we wish to factor a specific integer N. A 
measurement of the composite system energy returns a pair ((n,k)) 
where with probability one k|n. However, the probability of drawing 
such a pair is exactly |ank|

2. This means that if all |ank| have comparable 
magnitude, we need at least σ(N)=O(NlogN) trials to find a specific pair 
— the number of trials is exponential in log N or exponential in the 
number of bits used to represent N. This would change if we were able 
to prepare the system in an E-state concentrated on the components 
of the form |nA〉|kB〉 where k|n. This is, of course, a hard problem. We 
discuss it from the point of view of quantum computing in Section 3. 

E-states on a quantum computer
In this section we consider two different approaches to the 

construction of an E-state on a quantum computer. The first method 
relies upon the quantum multiplication circuit, while the second 
utilizes a quantum gate implementation of a specific arithmetic 
function. In both cases the resulting state is a superposition of a pure 
E-state with some additional “artefact" state components. However, 
as explained below, the pure E-state components are separated from 
the artefact components by their index range. Thus pure components 
can be separated a posteriori by a rudimentary classical observation 
or, alternatively, enhanced via the procedure known as amplitude 
2An example of this type of a quantum system is a decoupled spin-pair in an NMR 
experiment.

amplification, [9].

The departure point for both constructions is the known process for 
creating an equal superposition state, see e.g. [10]. This is obtained by 
an application of the single qubit Hadamard gates to the ground state:

2 1

/2
=0

1 | = | 0 .
2

n
n

n
x

x H
−

⊗〉 〉∑                 (11)

An E-state from quantum multiplication

 We will demonstrate how to prepare an E-state on a quantum 
computer with a quantum random access memory consisting of 
two registers. We let |x〉 |y denote the state of the registers, where it 
is understood that |x〉=|x1,x2,x3,..xn〉 is an n-qubit representation and, 
similarly, |y〉=|y1,y2,y3,..yn〉. Well known are quantum computing 
implementations of certain basic arithmetical operations, see e.g. 
[11,12] including addition and multiplication. We will make use of the 
multiplication circuit, implementing |x〉=|x1,x2,x3,..xn〉

|x〉|y〉|x〉|x.y〉

Where x.y denotes the product of two integers. (Here, multiplication 
may be effectively replaced by multiplication mod 22n.) However, since 
multiplication by zeros is not interesting we introduce a modification. 
Namely, we first add 1 to both x and y, effectively using

|x〉|y〉|x+1〉|(x+1)(y+1)〉                          (12)

Note that |x〉〉|x+1〉 is unitary, and implementable as simplified 
addition, as long as the register is by one qubit larger that the maximal 
value of x. Similarly, unitarity implies that |x+1〉|(x+1)(y+1)〉 cannot fall 
off the register range. Therefore, the second register should have at least 
M=22n qubits. We will now combine (11) with (12) to create an E-state. 
Indeed, in step one we set both registers in the equal superposition 
states:

2 1 2 1 2 2

=0 =0 =1 =1

1 1| 0 | 0 | | | | =:| .
2 2

n n n n

outn n
x y x y

x y x x y
− −

〉 〉 〉 〉 〉 ⋅ 〉 Ψ 〉∑ ∑ ∑∑ 

              (13)

The output state is very similar to an E-state except for some artefacts. 
The artefacts can be effectively dealt with either by treating them as a 
tolerable nuisance, and doing nothing until the quantum information 
is accessed, or else countermanding them via an application of the 
Grover’s search (amplitude amplification). We illustrate the procedure 
by an example with n=2, and M=n2=4. Note that the first register must 
support n+1=3 qubits. The end state in this case has the form (here 
c=1/4):

| 0 |1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15
|1
| 2
| 3
| 4

c c c c
c c c c

c c c c
c c c c

〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Note that not shown are rows corresponding to the states 
|5〉,|6〉,|7〉 or |0〉 on the first register—these rows contain only zero 
entries. Furthermore, note that the submatrix corresponding to values 
|1〉,|2〉,|3〉,|4〉 on the second register is the transpose of an E-matrix3. We 
also note that a measurement on both registers returns a pair of integers 
(a,b) where, a|b. (In the example at hand the special pair (4,0) signifies 
(4,16)). Note that those components of the output state that correspond 
to values other than |1〉,|2〉,|3,|4〉 on the second register cannot be erased, 
because such an operation would not be unitary. However, the resulting 
state contains an E-state as a separable component. Summarizing, the 
3The transposition stems from the fact that we adhere to the conventional 
organization of the quantum circuit operations. A reversal of the order of the 
registers results in an E-matrix as defined in Section 2. 
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proposed algorithm for the creation of an approximate E-state consists 
of the following steps:

•	 Prepare an initial state according to (11).

•	 Compute the (shifted) quantum product according to (13). As 
a result obtain an output state |Ψout〉=|ΨE〉+|ΨR〉, where |ΨE〉 is 
(proportional to) an E-state and |ΨR〉 is a remainder.

•	 Separate |ΨE〉 classically in the following sense: the measurement 
outcomes that belong in an E-state component are precisely 
those |x〉|z〉 where z∈{1,2…2n}

•	 Optionally, depending on an application, it may be beneficial 
to engage the generalized Grover’s search as a processing step 
preceding the classical separation. This step provides amplitude 
amplification, effectively boosting the weight of the |ΨE〉 
component and suppressing that of the |ΨR〉.

Remark 1: Note that the probability of an outcome that is an E-state 
component is 2 2( (1) (2) (2 )) / 2 2 log 2 / 2 / 2n n n n n nd d d n+ +  

. However, 
measurements on the full output state provide useful information, and 
separation of the E-state pointed out in the last step of the algorithm need 
not always be desirable. We emphasize that the probability of obtaining 
from measurement any pair a|b is always the same and equal to 2-2n.

Remark 2: The network complexity for multiplication of two 
registers is of the order n2. There are several known circuit architectures 
implementing multiplication. While some implementations rely on 
the quantum Fourier transform, [12], the classical Vedral-Barenko-
Ekert algorithm does not use it, [11]. Even though the latter algorithm 
demands a greater memory resource, it seems to secure computational 
stability independent of the input size.

Remark 3: Recall that the Grover search, as well as its various 
generalizations known as the amplitude amplification algorithms, 
[9], rely on the Grover rotation. To briefly summarize the principle 
and compute the complexity, we turn attention to |Ψout〉=|ΨE〉+|ΨR〉. 
The quantities a=〈ΨE|ΨE〉 and b=〈ΨR|ΨR〉 represent the probabilities 
of measuring a good component, in the support of |ΨE〉, and a bad 
component in the support of |ΨR〉. We wish to apply a quantum circuit to 
|Ψout〉 so as to boost the probability of measuring the good component. 
To this end we use the Grover’s rotation:

( ) 2| | = 2 | | | | | .E EG I I
a

 Ψ〉 Ψ〉 Ψ〉〈Ψ − − Ψ 〉〈Ψ + Ψ〉 
 



Grover’s rotation is applied k times to |Ψout〉 so that Gk |Ψout〉 
approaches a-1/2 |ΨE〉. The value of k depends on the initial partition 
of energy between |ΨE〉 and |ΨR〉 or, in other words, the ratio of the 
number of good states to the number of bad states. We have,

2 2 /2= ( 2 / (2 )) = ( 2 / (2 log 2 )) = (2 / ),n n n n n nk O O O nσ

i.e. the number of iterations is essentially exponential in n.

An E-state from f(x)=[N/x]. x.

This method is based on a quantum implementation of the 
arithmetic function f(x)=[N/x]. x, x∈. (We will not discuss the specific 
circuit implementation of this function, all reversible classical functions 
can be converted into quantum computations [13]. We wish to construct 
an E-state concentrated near the N’th column, where N<2n. To this end 
we prepare the state 

2
/2

=1
2 |

n
n

x
x− 〉∑  on the first register and subsequently 

implement a two-register operation.
2 2

/2 /2

=1 =1
2 | | 0 2 | | [ / ] .

n n
n n

x x
x x N x x− −〉 〉 〉 ⋅ 〉∑ ∑                (14)

The result is a relatively sparse E-state in superposition with an 
artefact vector. Let us illustrate this with an example for N=6. Selecting 
n=3, we obtain the following state matrix ( = 1/ 8c ):

| 0 |1 | 2 | 3 | 4 | 5 | 6 | 7
| 0
|1
| 2
| 3
| 4
| 5
| 6
| 7
| 8

c
c
c

c
c

c
c
c

〉 〉 〉 〉 〉 〉 〉 〉
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Note that the first register requires 4 qubits, and only part of it 
is shown. The E-state submatrix is indexed by |1〉……|6〉 on both 
registers. As before there is some overflow of energy to artefact state 
components, in this case, c|7〉|0〉+c|8〉|0〉. As before the artefact 
components can be separated classically a posteriori or suppressed via 
amplitude amplification [13].

Note that in general a measurement will result in drawing a 
nontrivial divisor of N with probability 2-n(d(N)-2). Again, one may 
apply the Grover’s rotation in order to bring the state close to the 
state supported on the d(N)-2 good components, which requires 

= ( 2 / ( ( ) 2))nk O d N −  iterations.

Applying the quantum Fourier transform

Let us briefly examine the effect of an application of the quantum 
Fourier transform (QFT) to an E-state. In the next subsection we will 
discuss the topic from a more general point of view, but it is helpful 
to first focus on the E-state part of |Ψout〉=|ΨE〉+|ΨR〉 as in (13). As 
remarked above, | EΨ 〉  is separated from the remainder |ΨR〉 by the 
second register range 1≤z≤2n. We will refer to the |ΨR〉 term as ‘out of 
bounds’ (OOB). Thus,

2 2 2

|
=1 | =1 =1

1 1| = | | = ( )| | ,
2 2

n n n

out zn n
z x z z x

x z OOB x x z OOBδ⋅Ψ 〉 〉 〉 + 〉 〉 +∑∑ ∑∑

Where δ.|z(x)=1 if x |z and δ.|z(x)=0 otherwise. Recall, [9], that the 
n-qubit QFT is defined via

1
2 /

=0

1| | , = 2 , {0,1, , 1}.
N

ixy N n

k
x e y N x N

N
π

−

〉 〉 ∈ −∑ 

Applying the shift |x〉|x-1〉 on the first register, and setting 
fz(x)=δ.|z(x+1) followed by the QFT yield

2 2 1 2 2 1

=1 =0 =1 =0

1 1 ˆ| ( )| | ( )| | ,
2 2

n n n n

out z zn n
z x z k

f x x z OOB f k k z OOB
− −

Ψ 〉 〉 〉 + 〉 〉 +∑∑ ∑∑ 

where for all z ˆ ( )zf k  is the discrete Fourier transform of fz. It is 
interesting to observe that /2ˆ (0) = 2 ( )n

zf d z− . Therefore, if the output 
state has been prepared as this, then from among the output states of 
the form |0〉|z〉, the more highly composite numbers, i.e. those with 
larger d(z), are more likely to be measured. 

The Dirichlet product of state vectors

In recent years there has been a trend in quantum computing to go 
beyond the realm of discrete algorithms and consider the possibility 
of manipulating the vectors represented in quantum state amplitudes. 
A representative example of that trend is reference [14], wherein the 
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authors address the problem of solving on a quantum computer the 
linear equation 1 2 1 2[ , , ] [ , , ]T TAβ β α α… = … . Here |α〉=Σαx|x〉 is regarded 
as given, A is a classically known matrix, and |β〉=Σ βx|x〉 is to be 
computed. Of course, prerequisite to this procedure is the possibility 
of implementing on a register the state |α〉 with the particular set of 
amplitudes. One method for accomplishing that is indicated in [15]. We 
base the following discussion on the possibility of implementing a state

2

=1
| 0 | ,

n

x
x

xα〉 〉∑                    (15)

where {|αx|
2} is a probability distribution4 on {1,2,…2n} With this 

understood, we will now show how to use the concepts introduced in 
the preceding paragraphs to describe an implementation of new types 
of E-states as well as the realization of the Dirichlet multiplication of 
the amplitude vectors. First, consider a straightforward generalization 
of (13). Namely,

2 2 2 2 2 2

=1 =1 =1 =1 =1 =1

1 1 1| 0 | 0 | | = | | | | =:| .
2 2 2

n n n n n n

x y x y x y outn n n
x y x y x y

x y x y x x yα β α β α β〉 〉 〉 〉 〉 〉 〉 ⋅ 〉 Ψ 〉∑ ∑ ∑∑ ∑∑         (16)

 Let us examine an example, assuming n=2, and M=n2=4 (M=4 is 
the number of qubits required for the second register, and n+1=3 is the 
number of qubits required for the first register.) In such a case |Ψout〉 
assumes the form:

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

4 4 4 1 4 2 4 3

| 0 |1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15
|1
| 2
| 3
| 4

α β α β α β α β
α β α β α β α β

α β α β α β α β
α β α β α β α β

〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉 〉
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
〉 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Note that the 4-by-4 submatrix under the registers one-to-four 
supports an E-state component. In general, we have

2 2 2

/ | /
=1 | =1 =1

1 1| = | | = ( ) | |
2 2

n n n

out x z x z x z xn n
z x z z x

x z OOB x x z OOBα β δ α β⋅Ψ 〉 〉 〉 + 〉 〉 +∑∑ ∑∑

This is much more general an E-state than that obtained in (13).

Next, we perform further computation of the output state. We first 
shift |x〉〉|x-1〉 on the first register, and then follow by the QFT on the 
first register. In detail, by letting fz=δ.|z(x+1)αx+1βz/(x+1) we obtain,

2 2 1 2 2 1

=1 =0 =1 =0

1 1 ˆ| ( )| | ( )| | .
2 2

n n n n

out z zn n
z x z k

f x x z OOB f k k z OOB
− −

Ψ 〉 〉 〉 + 〉 〉 +∑∑ ∑∑ 

Finally, we observe
/2 /2

/
|

ˆ (0) = 2 = 2 ( ),n n
z x z x

x z
f zα β α β− −∑ 

where αβ is the Dirichlet product (convolution) of the sequences α 
and β Thus, the component of |Ψout〉 distinguished by |0〉 on the first 
register is

2
3 /2

=1
| := 2 ( )| 0 | .

n
n

D
z

z zα β−Ψ 〉 〉 〉∑ 

Note that the example considered in subsection 3.3 is a special case 
and returns d(z)=ee(z), where e=[1,1,1,..]

Summarizing, the amplitudes at Gk |Ψout〉 at |0|z〉 components hold 
information about αβ (z). This type of information can only be accessed 
statistically. We point out yet again that the amplitude amplification via 
the Grover’s search algorithm may be engaged to obtain Gk |Ψout〉|ΨD〉. 
The number of iterations is 2 /2= ( 2 / 2 ) = (2 )n n nk O O .
4In fact a harder problem is considered in [15], which is implementation of a state 
where |αx|2 stems from a discretization of a continuous probability distribution. 
Also, the reader will note that we have modified the original design by the usual 
shift of the register index.

Remark: We recall that the known QFT algorithm has Θ(n2) 
complexity. Of course, since the QFT depends on unitary transforms 
with terms like exp 2πi/2n its hardware implementation requires 
precision (in terns of energy control or ultra-short pulse control, etc.) 
that is exponential in n. Notably, however, in some applications this 
difficulty may be overcome by replacing the QFT with the approximate 
quantum Fourier transform (AQFT) introduced in [16]. It is interesting 
to enquire whether the AQFT might facilitate additional gains also 
in the task of integer factorization via E-states. However, we do not 
undertake to address this problem here.

Remarks on E-states of quantum systems in thermal 
bath

As explained above once an E-state of the form (10) is formed, 
it will be preserved essentially unchanged in time (except for the 
unessential phase factors) as long as no measurement is conducted 
on the composite system. In this section we consider the problem of 
forming such a state outside the framework of the universal quantum 
computer. Indeed, one might hope that abandoning the constraint of 
universality would open more options for achieving such a goal. The 
approach we consider is based on the thermodynamic equilibrium, and 
utilizes the results in [17,18].

For simplicity we henceforth assume that |ΨE〉 is effectively finite. 
The first observation is that an E-state may be reduced to a more 
standard state via the Schmidt representation. Indeed, let E=USV* be 
the SVD decomposition of the matrix E=[ank] that holds the amplitudes 
of |ΨE〉. Thus, U and V are unitary matrices while S=diag[s1,s2,s3,..] is 
a diagonal matrix. Let us define new orthonormal bases for the two 
subsystems, namely *| = |A

n Ae U n〉 〉 , and | = |B
k Be V k〉 〉 . This gives the 

Schmidt representation of the E-state

| = | | .A B
E n n ns e eΨ 〉 〉 〉∑                    (17)

We will use these observations to attempt a construction of a 
quantum system regime in which |ΨE〉 will become its stationary state. 
The basic concept of adiabatic computing is to switch from the regime 
that instils |ΨE〉 back to the dynamics governed by the Hamiltonian (9) 
not disturbing the system state. To this end, one might try to construct 
an isolated system Hamiltonian for which (17) is a ground state. 
However, we propose an alternative approach, based on thermodynamic 
equilibrium at constant temperature. First, we define a Hamiltonian5 

=A B A B A BH H I I H− ⊗ + ⊗   where

= | |, = | | .A A A B B B
A n n n B n n nH h e e and H h e e〉〈 〉〈∑ ∑ 

Since
( ) | = ( ) | | ,A B A B

A B E n n n n nH h h s e eν ν− Ψ 〉 + − 〉 〉∑
|ΨE〉is not a stationary state with respect to HA-B, unless the 

Hamiltonian is completely degenerate = =A B
n nh h const . Unfortunately, 

the completely degenerate Hamiltonian is useless in distinguishing a 
specific state, since it views any state as stationary. However, consider 
as an alternative the evolution of the system stabilized by a heat bath 
at constant temperature T. When the system is in equilibrium, the 
Helmhotz free energy will be minimized. The Helmholtz free energy 
is given by:

[ ] = | | [ ], = | | .E E A B E A A B E EH kT S where Trρ ρ−Ψ 〈Ψ Ψ 〉 − Ψ 〉〈Ψ            (18)

 Here, S[ρA]= -Tr[ρAlogρA] is the von Neumann entropy. Note that 
S[ρA]= S[ρB] because the entropy depends on the nonzero eigenvalues 

5We emphasize that HA-B is to be distinguished from Hcomp.
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of the mixed state which are equal for both subsystems. Also, since 
Tr[ρA]=1=const, we may assume without any change to the dynamics 
that S(x)= -x log x+ x ,so that -S’(x)= log x. Now, ΨE will be stationary 
with respect to the functional  provided it satisfies the Euler-Lagrange 
equation

20 = ( log ) | = ( log | | ) | | ,A B A B
A B A B E n n n n n nH kT I h h kT s s e eρ ν ν− + ⊗ − Ψ 〉 + + − 〉 〉∑

and this implies:

: = 2 log | | .A B
n n nn h h kT sν∀ + −                (19)

Recall that {sn} is constrained by the fact that ΨE is an E-state in the 
basis |nA〉|kB〉, perhaps an E-state with specific features. This imposes 
a constraint on the energy levels A B

n nh h+ . Conversely, if the bipartite 
quantum system is exposed to a constant temperature T regime with 
the internal energy HA-B, where HA-B is characterised by the precise 
values of A B

n nh h+  obtained via (19), the system will settle in a stationary 
state of . Such a state is then expected to be an E-state w.r.t. the |nA〉|kB〉 
basis. However, the following questions appear to have fundamental 
significance as regards feasibility of creating an E-state via the proposed 
process: First, could the SVD data of an Eratosthenian state be known 
a priori and explicitly? Second, even with the assumption that the SVD 
data are known a priori, would it be possible to build a machine that 
instils a regime described by (18) with the precise values of A B

n nh h+
obtained via (19)?

Discussion and Results
We have discussed novel algebraic and computational structures 

based on the concept of Eratosthenian matrices (E-matrices) and 
Eratosthenian quantum states (E-states). We have observed that 
E-matrices furnish a noncommutative extension of the classical 
Dirichlet ring. We have also considered the task of initializing and 
manipulating E-states on a quantum computer and introduced an 
algorithm that implements the Dirichlet product of quantum state 
vectors. In addition, we have pointed out that if a method was known 
for efficient initialization of E -matrices with targeted narrow supports 
it would facilitate efficient factorization of integers.
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