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Abstract

HIV pathogenesis is extremely complex and involves both immunodeficiency that leads to opportunistic infections
and AIDS as well as excessive inflammation and systemic immune activation. Generalized chronic immune
activation and the progressive loss of the balance between T-helper 17 (Th17) and T-regulatory (Treg) cells have
been demonstrated as leading events in HIV pathogenesis. Recent studies have investigated interactions between
Th17 and Treg cells in relation to HIV infection. Th17 cells are perturbed during HIV infection in humans and SIV
infection in nonhuman primates. Studies of Th17 cells in humans and nonhuman primates has shown that depletion
of these cells is associated with the dissemination of microbial products from the infected gut, increased systemic
immune activation, and disease progression. Treg cells, another small sub-population of T-cells involved in
preventing or inhibiting autoimmune and inflammatory disorders has also been associated with HIV infection. Treg
cells have been associated with the reduced antiviral T-cell responses but not with the suppression of generalized T-
cell activation. In HIV patients, a profound depletion of peripheral blood Th17 cells, contrasted with a gradual decline
in Treg cells, has also been documented. Both T-cell subsets influence innate immune responses and, in doing so,
may shape the progression of HIV infection. Therefore, the relative balance between these two subsets rather than
the function of either alone is critical for disease progression following HIV infection. This review provides updates
and discussions on the relationship between Th17 and Treg cells subsets and HIV infection and disease
progression. Further, the impact of antiretroviral therapy (ART) on these cellular subsets will be reviewed. Finally,
unanswered questions relating to Th17/Treg cells and HIV progression and future perspectives for achieving
effective therapeutic strategies for HIV infection will be highlighted.
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Introduction
The pathogenesis of Human Immunodeficiency Virus (HIV) is

extremely complex. HIV infection is characterized by gradual loss of
CD4+ T cells, which leads to the loss of immune competence,
susceptibility to opportunistic infections and persistent systemic
immune activation resulting in Acquired Immune Deficiency
Syndrome (AIDS) [1]. Since the recognition of this infection,
considerable efforts have been made to identify the mechanism
involved in its pathogenesis. Research has been focused on the
immunological and clinical abnormalities that characterize HIV
infection. Whether the loss of immune competence seen in HIV
patients is caused by chronic immune activation or by the imposition
of immune balance or both is still debated. It is on this understanding
that current HIV research is focused on the immune balance and
cellular interplay among helper T-cells, especially Th17 and Treg cells
subsets.

Th17 and Treg cells are derived from a common progenitor, and
depending upon the cytokine milieu their differentiation is modulated
reciprocally in several ways [2,3]. This represents a close fundamental
relationship among these cellular subsets. The role of these cell subsets

are complex, and can have both detrimental and beneficial outcome
during HIV infection. In vitro, HIV replication can be controlled by
Th17 mediated immune responses and Treg cells may protect the host
from immune mediated damage [1]. However, the unchecked
proliferation of Th17 cells may contribute to systemic immune
activation while the unimpeded production of Treg cells may reduce
HIV specific T-cell responses and therefore facilitate the establishment
and maintenance of a chronic infection. Therefore, the relative balance
between these two subsets rather than the function of either alone is
critical for disease progression following HIV infection.

Different studies on the contribution of these cells subsets in HIV
infection have shown divergent results and their role in HIV infection
is poorly understood. This paper reviews changes in Th17 and Treg
cells and the possible role these cells play in disease progression during
HIV infection. The article also presents a review of the effects of
Antiretroviral Therapy (ART) on normalization of Th17/Treg cell
balance.

IL-17 producing Th17 cells in HIV Infection
The main target of HIV is CD4+ T cells which consist of multiple

functional cell subsets, such as Th1, Th2, Treg, and Th17 cells [1].
Th17 cells are the most recent subset of the T- helper (Th) family
defined by the secretion of IL-17, a pro-inflammatory cytokine that
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mediates most of its effectors functions. TGF-β along with IL-6, IL-21
and IL-23 cytokines are responsible for differentiation, amplification
and stabilization of Th17 cells respectively [4-6]. Through the potent
induction of cytokines, Th17 cells can bridge innate and adaptive
immunity and attract other pro-inflammatory cytokines, chemokines,
metalloproteinases from various tissues and Th cells to the sites of
infection [4].

Current evidence shows that during HIV infection Th17 cells are
preferentially depleted as compared to other Th subsets [7]. Given the
pivotal role of these cells in the defence against pathogens and in
mucosal homeostasis, their depletion impacts the outcome of HIV
infection. The characteristic depletion of Th17 cell in the gut may
result in increased microbial translocation and consequentially in
systemic immune activation, one hallmark of HIV infection [2].
Contradictory findings have however been reported on the role of
Th17 cells in HIV infection, and expression of Th17 related cytokines
have been linked to HIV disease progression [8-12].

Selective depletion of this T-cell subset has been reported in the gut-
associated lymphoid tissue as well as in peripheral blood of HIV-
infected individuals [9,13-16]. In fact, severe depletion of CD4+ T-cells
has been shown to occur in the gut mucosa during primary
HIV infection [16]. These observations suggest that HIV targets Th17
cells for destruction from the onset of infection for its subsequent
establishment in the host. It also pinpoints to a possible target for
treatment during early HIV infection aimed at increasing the
population of Th17 cells in the gut, which could be an important
factor in limiting HIV growth in cells throughout the body. In SIV
infection models, monkey species with both non-pathogenic infection
and those with pathogenic infection but good control of SIV
replication, are able to maintain normal Th17 cell levels in the gut
mucosa and blood, compared to animals with progressive infection or
HIV infected patients [9,17]. This demonstrates the importance of
these cells in the progression of HIV infection, making them possible
therapeutic target during HIV infection. HIV specific Th17 cells have
also been demonstrated in peripheral blood of HIV patients,
suggesting a possible role of these cells in host defence against HIV
infection [8,11]. On the contrary, another study reported preferential
loss of Th17 cells from gut mucosa, but could not detect such loss in
the peripheral blood [9]. It has been reported that IL-17 inhibits virus-
induced apoptosis and this could potentially enhance viral persistence
[12]. Such protection of virus-infected cells could represent a powerful
means for viral evasion of the immune system. These reports points to
a lack of consensus on the impact of HIV infection on these cellular
subset. There is therefore a major gap in our understanding of the
immune competency of Th17 cells in HIV infection which requires
further investigations.

Recently, a study group examined frequency and functionality of
Th17 cells in HIV-1 subtype ‘C’ infected and uninfected individuals
[18]. In this study, the authors reported that in healthy individuals,
virus specific Th17 cells were significantly induced in peripheral blood
at early stage of HIV-1 infection, but were considerably reduced in the
late stage subjects. It can therefore be speculated that HIV either
infects and destroys Th17 cells during the early stages of infection or
employs mechanisms to alter Th17 cells production. Systematic
studies to address this hypothesis are however yet to be undertaken. It
has also been reported that HIV-1 Gag specific peripheral blood Th17
cells are significantly depleted in late HIV infected subjects, compared
to early infected subjects and slow progressors [18]. A loss of Th17
cells in peripheral blood during late stage of HIV-1 infection could

render the subjects more prone to opportunistic infections.
Furthermore, early and enhanced emergence of IL-17 cytokine could
contribute to local tissue damage and favour viral dissemination in
HIV infection. These findings provide further evidence for a role of
IL-17 as important mediators of host response during viral infection.

Although efforts have been made in studying the relationship
between Th17 cells and HIV infection, more areas remain unexplored.
Of note, as preferential Th17 cells depletion occurs quite quickly, for
example, in a matter of days after acute infection in nonhuman
primates, it seems more likely that destruction of existing Th17 cells
must also occur. Current literature does not provide clear information
on whether these cells are preferentially infected by virus or, instead,
indirectly destroyed as bystanders. Studies are also limited to clearly
define mechanisms of selective Th17 cells depletion.

Regulatory T cells in HIV Infection
The importance of Treg cells contribution in HIV pathogenesis is

increasingly recognized. Significant research has been conducted on
the role of these cells in HIV infection. To date, however, the role of
Treg cells during HIV infection remains controversial [19-21]. It is not
clear whether Treg cells play a detrimental role or a beneficial role in
the pathogenesis of HIV infection, as two opposing hypotheses have
been proposed. A detrimental role of Treg cells during HIV infection
was suggested based on the evidence that Treg cells suppress virus-
specific immune responses [21]. Conversely, Treg cells could be
beneficial by limiting immune activation, thus controlling the
availability of HIV targets as well as preventing immune-based
pathologies.

Primary HIV infection is characterized by high levels of viral
replication followed by induction of HIV-specific CD4+ and CD8+ T-
cell immune responses [22]. Studies have shown that the magnitude of
those immune responses determines the subsequent course of
infection. It has been reported that regulatory CD4+ and CD25+ T-
cells could suppress HIV-specific effector CD4+ and CD8+ T-cell
responses in chronically HIV-infected patients [23]. Authors in this
study [23], found that in chronically infected patients, HIV antigens
triggered the proliferation of virus-specific Treg cells [23]. Indeed,
Treg cells appear to contribute to the control of viral replication
during the short phase of primary infection while appearing to have a
deleterious impact in the chronic phase of infection by inhibition of
HIV specific immune responses. A number of studies have
investigated Treg cells in HIV infection by assessing their frequency
and numbers in peripheral blood, mucosa and lymphoid tissue and
results have not been consistent. Treg cells numbers have been
reported to be decreased [24-27], increased [28-31], or unchanged [32]
during HIV-1/SIV infection [33]. Results with the SIV model show an
increased frequency of Treg cells in lymphoid tissues together with the
preferential depletion of Th17 cells [9]. This leads to a loss of balance
between these two T-cell subsets.

Treg cells plays a beneficial role during HIV infection by controlling
HIV replication in conventional T-cells [34] during early stages of
HIV infection, through a direct transfer of cAMP to conventional T
cells via gap junctions. Treg cells can have a beneficial role by
protecting HIV infected patients either at the primary or chronic
phase of infection from the deleterious effects of HIV-induced chronic
immune activation [35]. In HIV controllers, low frequencies of Treg
cells have been associated with effective adaptive immune responses,
and also with generalized immune activation and CD4+ T-cell
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depletion [36]. Treg cells activity could have a beneficial effect through
suppression of generalized chronic immune activation, and also
through inhibition of activated CD4+ T-cells proliferation,
inflammation, cytokine production and subsequent control of viral
replication [21]. Although mechanisms underlying the increased
frequency of Treg cells during HIV infection are not yet well defined,
increased cell proliferation and/or lower cell death have been
suggested. This is based on several important studies where the
correlation of Treg cells proliferation was associated with lower CD4+

T-cell counts [37-39]. A different study suggested that the HIV-Treg
cell interaction may contribute to the up regulated levels of Treg cells
observed in lymphoid and mucosal compartments of the HIV patients
[31]. In direct contrast however, several previous studies reported
decreased levels of Treg cells in HIV-infected individuals [23-27], and
in one study, depletion of Treg cells in HIV infection was found to be
associated with immune activation [23].

Treg cells may also play a detrimental role through inhibition of
anti-HIV immune responses [35,40-42], thus promoting HIV
persistence at the host’s expense. One study demonstrated expansion
of Treg cells during HIV infection positively correlating with CD4+ T-
cell activation and rapid disease progression, indicating a detrimental
role of Treg cells in the immune control of HIV infection [21,40]. Treg
cells frequency has been reported to be higher in mucosal tissues than
in the peripheral blood of untreated HIV-infected individuals, [43].
The observation that Treg cells frequency is higher in mucosal tissues
than in the peripheral blood of untreated HIV-infected individuals
suggests that Treg cells could reduce the availability of HIV target cells
for HIV replication in these tissues. Recent studies have shown that
dendritic cells (DCs) can induce peripheral conversion of conventional
T-cells into Treg cells. DCs are amongst the first target cells to
encounter the virus at mucosal surfaces. It is well established that DCs
facilitate HIV dissemination to the lymphoid organs by enabling HIV
infection of CD4+ T-cells. Treg cells have been shown to accumulate
during HIV infection [29] and to alter DC-T cells interactions [44].
This Treg cells accrual could thus control DC-mediated transmission
of HIV to CD4+ T-cells, similar to their effect on HIV infection in
macrophages and conventional CD4+ T-cell [34]. A recent study
showed that naive Treg cells numbers were essentially preserved,
whereas effectors Treg cells were consistently affected during HIV
infection. Of particular interest, the effector but not total or naive Treg
cells numbers negatively correlated with the magnitude of HIV-
specific CD8+ T-cell responses [45], suggesting a deleterious role of
Treg cells in HIV-pathogenesis by diminishing HIV immunity. In
HIV-exposed uninfected people, low levels of immune activation are
associated with an increase in Treg cells frequency, suggesting that
Treg cells may contribute to HIV resistance by controlling levels of T-
cell activation and consequently by minimizing the pool of cells that
are susceptible to infection [46].

Owing to these controversial findings, there remain unanswered
questions of the immune competency of Treg cells in HIV infection
which demand further investigations. The conflicting results from
various Treg cells studies in HIV infection highlights the complex
interactions that are involved in the immuno-pathogenesis of HIV
infection. Further understanding of Treg cells dynamics will greatly
facilitate the investigation of the role of these cells during HIV
infection that will be critical for the design of potential
immunotherapeutic strategies targeting Treg cells. Of particular
interest, some Treg cells can also produce the inflammatory cytokine
IL-17A, and recent studies suggest that IL-17+ Treg cells may also have
pathogenic potential [3], emphasizing the need for a better

understanding of Treg cells in HIV infection. To date, no study that
has investigated whether the altered Treg cells during pathogenic HIV
is discriminative of only a subset of Treg cells that secretes IL-17 or the
entire Treg cells. Studies in this area could lead to a clear reporting of
specific Treg cells subset that are altered rather than reporting a
blanket alteration of Treg cells, and subsequent Th17/Treg balance in
HIV infection, which could also inform targeted treatment of HIV
infection.

Importance of Th17/Treg cells balance in HIV
Infection

Th17/Treg cells balance could explain why disease progresses fast in
some people as compared to others. A significant and progressive loss
in Th17 and gain in Treg cellular frequency has been observed as
disease progress from early to late stage of HIV infection [18]. This
observation could indicate slow progressors’ capacity to develop
strong HIV specific Th17 cell responses contrasted with a faint Treg
cellular performance, which could explain the importance of these
cellular subsets in progressive versus non-progressive HIV infection. A
significant gradual loss of Th17/Treg cells balance is found to be
associated with disease state, plasma viral load and immune activation
[47]. Significantly elevated production of HIV specific Th17 cells was
found in slow progressors [47], which indicate that the predominance
of these cells in peripheral blood may contribute to their natural
resistance to HIV disease progression. An increased number of Th17
cells in the long term non-progressors could result in a more preserved
immune response against opportunistic infections and therefore
explain the reduced immune activation and slower disease
progression. In this respect, treatment aimed at increasing Th17 cells
may improve the control of HIV growth by promoting an
environment in which T-cells having more anti-viral capabilities are
produced. On the other hand, the unchecked proliferation of Th17
cells may contribute to systemic immune activation while the
unimpeded production of Treg cells will reduce HIV specific T-cell
responses and may therefore facilitate the establishment and
maintenance of a chronic infection. Therefore, the relative balance
between these subsets rather than the function of either alone is critical
for disease progression following HIV infection.

Understanding how Th17 cells are deregulated in HIV infection is
crucial to restoring its population and function and it is possible that
treatments designed to increase Th17 levels may be beneficial to HIV
infected patients. Furthermore, if an intervention can be developed to
restore Th17/Treg cells balance, it could allow for a more effective
immune response after exposure to an HIV vaccine or the virus itself.
This may be particularly important in the protection against
opportunistic diseases, given that Th17 cells have been well
characterized to protect against bacterial, parasitic, and fungal
infections [7,13,16]. Clearly, alteration in the status of Th17/Treg cells
might be central to the development of therapeutic interventions that
modify the consequence of cellular damage and by extension, disease
progression. Also, treatment strategies designed at replenishing these
cytokines during late stage of infection should be considered. More
studies to definitively link changes in the Th17/Treg balance with the
immunopathology of HIV infection are needed. Further attention to
the balance of Th17 and Treg subsets will therefore reveal much about
the immune- dynamics of Th17 and Treg cells in HIV pathogenesis.
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Impact of ART on

IL-17 Producing Th17 cells
Left untreated, HIV depletes mucosal Th17 cells within the first 6

months of infection, and long-term therapy does not fully restore
them [48,49]. Loss of these critical cells sets the stage for on-going
immune activation in people with HIV [50]. Highly Active
Antiretroviral Therapy (HAART) is currently the most effective
treatment to control AIDS progression [1]. HAART treatment acts by
controlling viral replication and reducing viral load, preventing
worsening symptoms of immune deficiency, slowing disease
progression, and ultimately decreasing opportunistic infections and
tumours.

HAART has been demonstrated to alter the percentage of Th17 and
Treg cells in peripheral blood and lymphoid tissue of HIV patients
under treatment. In one study to determine dynamic changes in
peripheral blood Th17/Treg cell balance in HAART HIV- 1/AIDS
patients, it was observed that after HAART therapy for 6 or 12
months, the Th17 percentage increased while Treg cells percentage
decreased. The ratio of Th17/Treg cells was significantly decreased in
HIV/AIDS patients before treatment, and HAART treatment partially
normalized the Th17/Treg ratio [51]. This suggests that the imbalance
of peripheral blood Th17 and Treg cells may play a crucial role in the
pathogenesis of AIDS. HAART can therefore restore the balance of
Th17 and Treg cells as well as the IL-17 level, which may gradually
rebuild the immune equilibrium in HIV/AIDS patients even if not to
levels comparable to healthy individual.

Effects of Antiretroviral Therapy (ART) on inflammatory markers
are generally thought to be due to suppression of viral replication and
immune reconstitution rather than direct effects on the immune
system. T-cell activation declines during long-term ART treatment,
but immune activation remains elevated and is associated with poor
CD4+ T-cell reconstitution [52]. When viral load is suppressed with
ART, immune activation persists and predicts progression. Although
the causes of persistent immune hyper-activation remain incompletely
characterized, physiological alterations of gastrointestinal tract
probably play a major role. Of note, ART, which results in the
complete suppression of HIV replication, is not sufficient to fully turn
off immune activation, and indeed, HIV-infected individuals with
poor CD4+ T-cell recovery on virologically suppressive ART often
exhibit higher levels of immune activation [53]. Such immune
activation could be due to the loss of Th17 cells permitting microbial
translocation across the gastrointestinal mucosa and thereby
promoting immune activation driven by bacterial lipopolysaccharide,
which is associated with disease progression. Immunologic
abnormalities in Gut-Associated Lymphoid Tissues (GALT) are
thought to be a major cause of microbial translocation and resulting
chronic immune activation in HIV-infected patients on ART. Long-
term ART may normalize Th17 cells frequency as well as the Th17/
Treg ratio in GALT [54]. However, there is evidence in the literature
that Th17 cells are only partially restored by ART in the GALT [55].

Timing for start of ART significantly influences the outcome of
HIV infection. Starting ART in the earliest stage of acute HIV
infection prevents loss of mucosal Th17 cells which are instrumental
in preserving the mucosal barrier in the gut, according to results of a
comparative study in Thailand [56]. Early ART use also fully reversed
significant local and systemic immune activation in the gut. But
starting ART just a little later did not have these effects [56]. This

evidence supports earlier initiation of ART and the lack of
demonstrable harm in starting therapy earlier. In addition to the
benefit of earlier initiation of therapy for the health of the HIV-
infected individual, the reduction in sexual transmission to HIV-
uninfected individuals provides further reason for earlier initiation of
ART [53]. However, future studies should establish how late in HIV
infection ART can be started and still achieve normalization, the
durability of the response, the effect on other biomarkers of
inflammation, and assess if restoration of immune function is
adequate.

Although HAART generally suppresses HIV replication to
undetectable plasma levels for prolonged periods of time, it fails to
eradicate the virus. Interruption of HAART almost invariably leads to
rebound viral replication. This raises the question of the importance of
depleted Th17 cells in establishment of latent HIV reservoir, an area
that has not been addressed. Therefore, studies to establish whether or
not depletion of Th17 cells impacts establishment of latent HIV
reservoir, especially in resting Treg cells, should be pursued. It is
possible that depletion of Th17 during pathogenic HIV infection
corresponds to viral persistence in resting Treg cells and therefore
normalizing Th17 cells subsets balance could be important in reducing
the number of latent HIV in resting Treg cells.

Regulatory T cells
The increased frequency of peripheral and mucosal Treg cells,

which seems to be a characteristic feature of untreated HIV infection,
triggers various effects that are either beneficial or detrimental.
Recently, it has been shown in chronic Hepatitis B (HBV) that
inhibition of viral replication by anti-HBV drugs is associated with
diminished Treg cells expression [57]. An inverse relationship between
the frequency of Treg cells and the qualitative and quantitative
response to the Hepatitis B Virus (HBV) vaccine in HIVinfected
subjects has been reported [58].

However, the impact of ART on Treg cells frequency in HIV-
infected patients remains controversial and few studies have
investigated the effect of ART on Treg cells levels.

Results
Results regarding the influence of ART on percentage and counts of

Treg cells are not consistent among studies [28] and longitudinal
effects of ART on Treg cells are rarely reported. Another important
aspect of Treg cells in HIV patients is the modulation of this
population with antiretroviral treatment and successful control of viral
replication. Based on the hypothesis that Treg cells levels are
modulated by HIV replication, one may expect that control of viral
replication will induce opposite changes. Two research groups have
analysed the effect of HAART on the levels of Treg cells and both
found a decrease when viral load was controlled with treatment
[28,59]. In the first study, levels of Treg cells were increased in
lymphoid tissue and decreased in peripheral blood of untreated
patients. Control of viral replication with HAART induced a decrease
of these cells in lymphoid tissue and an increase in peripheral blood.
The authors conclude that Treg cells migrate from peripheral blood to
lymphoid tissue during periods of active HIV replication, and that this
is reversed when viral replication is controlled with treatment. Similar
results were obtained when levels of Treg cells in gastrointestinal
mucosa was analysed [28]. However, in contrast to the work of
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Andersson [59], they found a slight increase in peripheral blood Treg
cells that normalize after treatment.

Most studies suggest that treatment is able to significantly decrease
or even normalize Treg cells frequency at levels similar to that of
healthy donors, at least in patients with successful ART [60]. Hence,
successful ART might reduce Treg cells expansion associated with
HIV infection. Moreover, in most cross-sectional studies, peripheral
Treg cells frequency was reported to be lower in ART-treated patients
compared with untreated, chronically infected patients [36]. Studies
on whether Treg cells frequencies are reduced during short or long
period of treatment have found no difference in the frequency of these
cells during the course of ART. It is reported that maraviroc, the first
ART drug to target a human protein, the CCR5 co-receptor,
significantly reduced Treg cells both in the shorter term and after one
year of treatment [61]. This observation explains ART associated
immuno-modulatory effects and open new therapeutic expectations
for the development of Treg depleting immunotherapies. A recent
longitudinal study showed that Treg cells frequencies were normalized
by ART [62] and that the proportion of Treg cells increased as a result
of immune activation following ART interruption [63]. The authors
reported that patients undergoing structured treatment interruption,
showed an increase in Treg cells frequency following ART
interruption [63]. Another study has further demonstrated a
percentage increase in Treg cells before ART and normalization after
ART [64], suggesting that low Treg cells percentage may benefit
antiviral immune responses in HIV infection.

Other studies reported that levels of Treg cells frequency in ART-
treated HIV patients remained significantly higher compared to those
in healthy subjects [65,66]. Combined antiretroviral therapy has been
reported to have an impact on Treg cells, but there are contradictory
results about its capacity to normalize Treg cells levels [64]. In
addition to ART, new HIV immunotherapy investigations have shown
that the frequency of Treg cells may be influenced by
immunotherapeutic interventions. A study has demonstrated that
long-term IL-2 therapy leads to the expansion of naive CD25loFoxP3+

and activated CD25hiFoxP3+hinTreg [67]. Specifically, this study
showed that IL-2 therapy preferentially expands Treg cells in infected
individuals and that individuals with the greatest expansion are more
likely to progress to disease.

Taken together, these studies show that depending on the phase of
infection and the level of immune activation Treg cells may play a dual
role in HIV infection in which there is a fragile balance between
reducing immune activation and inhibiting HIV-specific T-cell
functions. Owing to the split personality of Treg cells, information
regarding their dynamics during ART treatment needs further
investigation. However, the knowledge gained from previous studies
provides a great deal to our understanding of the role of these cells in
HIV infection and their dynamics during ART treatment. Most studies
suggest that normalizing Th17/Treg cells balance is the key to
successful treatment of HIV infection. Studies to explore why the
current ART regimen fails to normalize Th17/Treg cells balance are
therefore crucial to inform future design of ant-viral therapy.

Conclusions
Although there is ample evidence regarding the involvement of

Th17 cells in various disease models, their function in HIV infection is
not fully characterized. HIV infection is characterized by selective
depletion of Th17 cells and loss of the balance between Th17 and Treg

cells corresponding to the altered cytokine induction. These findings
emphasize that strategies to preserve or to more rapidly restore altered
Th17/Treg cells balance may have important therapeutic benefit to
HIV infected patients. Despite previous studies, the relative impact of
HIV infection on Th17 and Treg cells subsets remains poorly
understood. This call for studies to elucidate further the different
immuno-regulatory networks in HIV infection in order to determine
the specific cellular or molecular pathways that can be altered to boost
the body’s immune control of HIV. Clearly, the current literature
demonstrates the need to examine further the role and immune-
homeostasis of Th17/Treg cells balance in the immuno-pathogenesis
of HIV infection. More studies in the areas listed below could enhance
our understanding of Th17/Treg balance in the context of HIV
infection.

Future research focus areas
• Increased research to fully characterize the involvement/functions

of Th17 cells and complex cytokine interaction in HIV infection
• Elucidation of the mechanisms responsible for selective depletion

of Th17 cells during pathogenic HIV infection
• Clarify whether Th17 cells are preferentially infected by virus or

instead indirectly destroyed as bystanders during HIV infection
• Clarify whether Treg cells play a detrimental role or a beneficial

role in the pathogenesis of HIV infection and the impact of altered
Th17/ Treg cell subsets ratio in HIV infection

• Establishing how late in HIV infection ART can be started and still
achieve normalization, the durability of the response, the effect on
other biomarkers of inflammation, and assess if restoration of
immune function is adequate
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