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Abstract

antimicrobial agents and new therapies.

The adhesion of bacteria to target tissues is frequently a necessary first step in pathogenesis. Blocking of such
adhesion can provide an efficient way of interfering in bacterial infections. A wide spectrum of microbial pathogens
bind to cell surface heparan sulfate proteoglycans in order to facilitate adherence, attachment and cellular entry, as
well as to evade defense mechanisms. Knowledge of these mechanisms is important for the development of novel

Keywords: Proteoglycan; Glycosaminoglycans; Heparan sulphate;
Microbial pathogenesis

Bacterial Adhesion to Cells

Bacterial infections constitute a major global health problem.
Adhesion of bacteria to eukaryotic cells is often an important first step
in the pathogenic process, and this early establishment of physical
contact between pathogen and host can be used as a target for the
development of novel ways of interfering with bacterial infections.

Over recent years, new insights have emerged regarding the
mechanism and biological significance of such interactions. In its
simplest form, microbial adhesion demands the participation of two
factors: a receptor and a ligand. The typical bacterial ligands,
called adhesins, are macromolecular components of the bacterial cell
surface which interact with specific target receptors on the host cell. In
reality, this process may be complex and for a single microbe can
involve redundancy or the possession of multiple adhesins or
mechanisms of attachment. These mechanisms can co-operate to
create high affinity interactions and increase bacterial adhesion, and
the first adhesive event may trigger the expression of receptors for
additional adhesins in the target cell [1-7]. Moreover, some bacteria
may use phase variation, displaying on-off expression of different
surface structures for immune evasion. Hence the importance of the
diversity of receptor targeting mechanisms to the success of adherence
and subsequent pathogenesis is evident.

Different Gram-negative bacteria can display several components,
such as the hair-like adhesive structures referred to as pili or fimbriae,
which are constituted by proteins on the surface that can behave as
adhesins for specific adherence (Figure 1). One example of this is type
1 fimbriae, which are widely expressed by Escherichia coli and are
used by uropathogenic strains to attach to the urinary tract. These
fimbriae belong to a class of fibrillar adhesion structures assembled
through the chaperone/usher pathway [8-10]. Gram-positive bacteria
also show a great variety of factors involved in adherence, like matrix-
binding proteins called microbial surface components recognizing

adhesive matrix molecules (MSCRAMMSs) [11,12]. These proteins
bind to extracellular matrix proteins such as fibronectin, collagen
vitronectin and laminin among others.
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Figure 1: Adhesion of bacteria to target cells mediated by
proteoglycans. Schematic representation of adhesins on the outer
membrane of Gram-negative bacteria, and structure of a
proteoglycan on the cell surface of a eukaryotic cell. Heparan
sulfate proteoglycans are commonly arranged on the cell surface
and in the extracellular matrix. Cell-associated proteoglycans
include glycosyl-phosphatidylinositol-anchored glypicans and
integral membrane syndecans (as the one shown in this figure).

As regards eukaryotic cellular receptors, they are ubiquitous on the
surface of epithelial cells, and capable of displaying great variability,
which accounts for the organotropism proven in some bacterial
adhesions. This is the case of proteoglycans (PGs), glycoconjugates
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involved in the attachment of a wide spectrum of microbial pathogens,
including viruses, bacteria and parasites. PGs can also be involved in
other steps of pathogenicity, such as cellular invasion or evasion of
defense mechanisms [13-17], and they are therefore proposed as
potential targets for novel prophylactic and therapeutic approaches.

Structure and Function of Heparan Sulfate
Proteoglycans

PGs are composed of different core proteins, post-translationally
modified with anionic polysaccharides called glycosaminoglycans
(GAGs). GAGs are mainly composed of repeating disaccharides
containing acetylated aminosugar moieties and uronic acid [18].
Differences in the type of monosaccharides in the repeating unit, as
well as in their sulfation patterns, result in various types of GAGs [19].
Heparan sulfate (HS) is a widespread form of sulfated GAG, being
present in all cell types and tissues at the extracellular and cellular
levels (Figure 1). HS consists of repeating disaccharide units of N-
acetylglucosamine (GlcNAc) and hexuronic acid residues. HS chains
are synthesized in the Golgi apparatus by enzymes that initially
polymerize alternating GIcNAc and glucuronic acid (GlcA) residues
[19]. The resulting disaccharide repeats are then variously modified by
interdependent reactions that do not occur uniformly along the chain.
First, N-deacetylase/sulfotransferases (NDSTs) catalyze the N-
deacetylation, usually followed by the N-sulfation of the GIcNAc units.
It is worth remarking that these reactions principally occurs in
domains of, usually, 3-6 disaccharides in length (known as S-
domains), in which the GlcA may subsequently be C5-epimerized into
iduronic acid (IdoA), this is followed by various O-sulfations,
frequently at the C6 and C2 position of the glucosamine and IdoA
residues respectively, and more rarely at the C3 of glucosamine and C2
of GlcA [20]. HSPGs bind to a large number of ligands and, although
some bind directly to core proteins, the vast majority interact with
sulfated domains within HS chains. Differences in the degree of
epimerization and sulfation patterning during HS biosynthesis
generate very high variability and, as such, provide HS chains with
various different docking sites for the various ligands of the
polysaccharide [21].

A broad range of both normal and pathological functions have been
ascribed to HSPGs, including cell adhesion and migration,
organization of the extracellular matrix (ECM), regulation of
proliferation, differentiation and morphogenesis, cytoskeleton
organization, tissue repair, inflammation, vascularization and cancer
metastasis, the function ultimately depending on the fine structure of
the chains [21-26]. Specific sets of variably modified disaccharides,
usually within the sulfated domains, define binding sites for a
multitude of specific ligands such as cytokines, chemokines, growth
factors, enzymes and enzyme inhibitors, and ECM proteins [23,27,28].
HSPGs fall into three groups according to their location: membrane
HSPGs, mainly syndecans and glypicans; secreted extracellular matrix
HSPGs including agrin, perlecan and type XVIII collagen; and
serglycin which is usually located intracellularly in secretory vesicles.
Membrane HSPGs cooperate with integrins and other cell adhesion
receptors to facilitate cell-ECM attachment, cell-cell interactions, and
cell motility [29,30].

Involvement of Heparan Sulfate Proteoglycans in
Bacterial Pathogenesis

Many pathogens make use of HSPGs as essential factors in their
virulence activity, including both Gram-negative and Gram-positive
bacteria, although the molecular and cellular strategies involved vary
significantly among microorganisms. HSPGs can provide specific sites
for adhesion and, subsequently, they may be involved in
internalisation of some microorganisms and in other mechanisms
related to pathogenicity.

The sexually transmitted disease gonorrhea is caused by the Gram-
negative bacterium Neisseria gonorrhoeae which binds to syndecans
on the epithelium surface thanks to the adhesin OpaA. [31,32]. Both
syndecan-1 and -4 can act as receptors in this case due to their
overexpression in HeLa cells increasing the adhesion of bacteria
[31,33]. Upon binding, intracellular signaling cascades are activated by
the cytoplasmic domain of the syndecans, which have been shown to
be essential for invasion using HeLa cell mutants in these domains
[33]. In addition to the binding step, HSPGs play an important role in
the internalization of N. gonorrheae, as in HEp-2 human laryngeal
carcinoma cells, where the complex syndecan-OpaA uses fribronectin
to bind to Pl integrin receptors, which mediate the internalization
[32].

The Gram-negative bacterium Helicobacter pylori appears adhered
to gastric mucosa, and it has been recognized as the main cause of
gastritis and ulcers and it is classified as a class I carcinogenic agent by
the International Agency for Research on Cancer due to its association
with gastric carcinogenesis [34-36]. HS chains on the surface of gastric
cells are mainly responsible for the adhesion of H. pylori, mediated by
the recognition of HS by the outer-membrane proteins of the bacteria
[37-40]. The different strains of the bacterium have varying degrees of
pathogenicity, depending, among other things, on the presence of the
cag pathogenicity island, which encodes a type IV secretion system,
and the cytotoxic protein CagA [41,42]. CagA is directly injected into
the bacteria-attached host gastric epithelial cell via the bacterial type
IV secretion system. The translocated protein CagA deregulates
intracellular signaling pathways, leading to various effects, including
the activation of the NF-kB signaling pathway. NF-kB transcription
factor binds to a specific sequence within the promoter of the human
syndecan-4 gene to enhance its expression [41,42-48]. This
upregulation of the expression of syndecan-4 has been described in
human gastric mucosa and in the gastric carcinoma epithelial cell lines
MKN45 and AGS and it is dependent on the presence of cag in the
genome infecting strain [49]. Besides the adhesion of the bacteria to
the cell surface, H. pylori secrete many proteins that are important for
both initial colonization and persistence in the gastric mucosa [50]. HS
is also involved in the binding of secreted factors, as is the case in the
attachment and entry of cytotoxin vacA, an important pathogenic
factor that causes extensive vacuolation that eventually leads to cell
death [51].

Within the group of Gram-negative bacteria there are various
examples of intracellular pathogens, such as the members of the genus
Chlamydia, whose adherence and entry into human cells depends on
HSPGs. These microorganisms show a unique developmental cycle
characterized by two functionally and morphologically distinct
bacterial forms, the elementary body (EB) and the reticulate body (RB)
[52]. Infection is initiated by the metabolically inactive EB which then
differentiates into the larger, metabolically active RB after endocitosis.
HSPGs mediate the initial attachment of several species of Chlamydia,
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to different degrees depending on the species, strain, and host cell [53].
C. trachomatis presents several serovars that produce diverse
infections and show different HS dependencies both in vivo and in
vitro; the interaction of serovar L2 with cells is highly reduced by HS
and heparin, although serovar E binding is not affected [54,55].
Another route for C. trachomatis to interact with cells is mediated by
fibroblast Growth Factor 2 (FGF2) which binds directly to EBs,
facilitating the interaction between the bacterium and FGF receptor
(FGFR). The receptor is locally activated and contributes to bacterial
uptake into non-phagocytic cells [56]. FGF2 is also capable of interact
with HS from the host cell itself and furthermore its binding to EB
may involve synergistic interactions with OmcB, an EB outer
membrane protein that also uses HS from the epithelium as receptor
[56-58]. Infection stimulates an increase in production of FGF2,
enhancing the subsequent cycles of infection by the bacteria. FGF2
may play additional roles in the pathogenesis of chlamydial infection
by potentiating the inflammatory response, by inhibiting apoptosis, or
by modulating gene expression [56]. Another species of this genus, C.
pneumoniae, also uses HS chains as receptor to bind to the cell surface.
The interaction of this microorganism with HEp-2 host cells, which
present high levels of HS and strong expression of PG-core protein
genes, can be inhibited by HS and heparin although not completely,
which suggests that both attachment and entry may be mediated by
other co-receptors [59,60]. Nevertheless, C. pneumoniae is also able to
infect lymphoid Jurkat cells and CD4+ lymphocytes, which poorly
express PG-core proteins and present minimal expressions of GAGs,
implying the presence of attachment irrespective of the presence of
HS, even if the adhesion is inhibited by HS, indicating that other
molecules are implicated [60].

Another example of a Gram-negative obligate intracellular
pathogen is Borrelia burgdorferi, a spirochete bacterium that is well
known as the causative agent of Lyme disease. B. burgdorferi infects
multiple tissues, such as the heart, joint, skin, and nervous system, by
means of different GAG species depending on the tissue. In HeLa cells,
heparin, HS, and dermatan sulfate (DS) reduced the attachment of
virulent B. burgdorferi strain 297, and these three GAGs are also
implicated in binding to neuronal and primary telencephalon cell lines
[61,62]. However, heparin and HS play the most critical role for
spirochetal binding to primary endothelial cells and Vero cells, while
DS mediates attachment to Human Embryonic Kidney 293 cells
[61,62]. GAGs are recognized by multiple B. burgdorferi surface
proteins depending on the cell type: Bgp (heparin-binding), DbpA and
DbpB (GAG binding), and BBK32 (fibronectin and GAGs), each
shows binding specificity to different cells and GAGs [63,64].

HSPGs have essential roles in microbial recognition, interaction,
adherence and internalization through a wide range of mechanisms,
and may be have other roles such as signaling cascades, gene
expression regulation or co-receptors of many different factors,
altering cells and allowing the invasion to spread [16,65]. Moreover,
membrane-bound PGs can also function as soluble molecules since the
intact extracellular domain can be released from the cell surface by an
enzymatic cleavage mechanism known as ectodomain shedding. These
soluble PGs can function as autocrine or paracrine effectors, and can
also be used as a mechanism of pathogenesis by a broad range of
infectious and noninfectious diseases [65,66].

Gram-negative opportunistic pathogen Pseudomonas aeruginosa,
the major cause of burn infections and cystic fibrosis lung disease, uses
a combination of virulence strategies, including shedding of HSPGs. It
induces syndecan-1 shedding in vitro and in vivo via its virulence

factor LasA by means of a mechanism involving metalloproteinases
[67]. Syndecan-1 shedding is important for P. aeruginosa infection,
since shedding antagonists attenuates its virulence as demonstrated by
the fact that syndecan-1 null mice resist the infection [67]. Another
virulence mechanism used by P. aeruginosa involves the degradation
of decorin by extracelular proteinases, elastase and alkaline proteinase,
which releases DS chains. The released DS binds to neutrophil-derived
a-defensin, and this binding completely neutralizes its bactericidal
activity [68]. In addition P. aeruginosa presents different virulence
factors in its outer membrane to bind to non-polarised and untight
epithelial respiratory cells. Among them, pilin ligands interact with
GalNAcP1-4Gal moiety of asialoGM1 glycolipids, infrequent in
normal pulmonar epithelium but increased in cystic fibrosis one; while
non pilus ligands adhere to cells through HSPGs, which can be
inhibited by heparin [69,70]. In polarized epithelium P. aeruginosa
recognizes distinct receptors on the apical and basolateral surfaces; the
microorganism binds specifically to MDCK cells and colocalizes with
HS-rich areas at the basolateral membrane, although it interacts with
complex N-glycans on the apical surface [71].

HSPGs are also a critical factor in the pathogenicity of a wide range
of Gram-positive bacterial pathogens, which present distinct
mechanisms of adhesion to cell surfaces as well as shedding
mechanisms. Staphylococcus aureus is a common cause of various
infections such as corneal keratitis, although this bacterium can be
found as part of the normal microbiota, where it is not pathogenic. In
corneal infections, syndecan-1 has been proven not to play any role in
adherence or attachment to corneal epithelium in mouse and rabbit
models, the key host determinants that mediate the initial attachment
being collagen and/or fibronectin in the latter [72]. Nevertheless, S.
aureus is able to induce the shedding of syndecan-1 ectodomain
through a- and P-toxin, both in vitro and in mice models, which
inhibits neutrophil-mediated bacterial killing mechanisms in an HS-
dependent manner, thereby increasing the pathogenesis process and
bacterial survival. Shedding is also involved in increasing the damage
and inflamation process by generating gradients of quimioatractors
[72]. However, in intestinal epithelium HSPGs are involved in S
aureus internalization and colonization in mice models, where the
bacterium can be internalized by non-professional phagocytes through
interaction with HS moieties of cell-surface HSPGs independent of
fibronectin binding [73].

Mycobacterium tuberculosis, the Gram-positive bacterium that
causes tuberculosis, infects phagocytes and pulmonar epithelial cells,
but adhesion only happens in the latter, being mediated
predominantly by heparin-binding haemagglutinin adhesin (HBHA).
Extrapulmonary dissemination is also mediated by this adhesin, whose
binding to cell surface HSPGs triggers intracellular signaling
mechanisms that are critical for the transcytosis of M. tuberculosis,
leading to the dissemination of the infection [74].

Listeriosis is a serious infection caused by eating food contaminated
with the Gram-positive intracellular pathogen Lysteria monocytogenes
which is able to invade a wide range of cells, such as macrophages and
nonphagocytic cells, by inducing its own internalization [75,76]. In
intestinal cell lines heparin and HS inhibit adherence and
internalization of L. monocytogenes in cells with prominent
syndecan-1 expression such as HT-29, but not in Caco2 which displays
low syndecan-1 expression, thus demonstrating the important role of
this HSPG in pathogenicity [77,78]. This bacterium has several
membrane proteins involved in adherence, one of which is ActA
which interacts via HSPG with the cell surface with low affinity and
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mediates migration into and between nonphagocytic cells by
exploiting host cell cytoskeletal machinery [75,76]. On the other hand,
in nonphagocytic cells L. monocytogenes expresses two invasins, InlA
and InlB, which induce bacterial internalization. During invasion of
polarized epithelial cells, the protein InlA takes advantage of the
adhesion molecule E-cadherin and the adherens junction machinery
to bind and invade, while in non-polarized epithelial cells InlB
interacts with the hepatocyte growth factor receptor Met, which
interacts with GAGs to induce endocytosis of the receptor and also to
facilitate internalization of the bacteria [79].

Gram positive bacteria from the genus Streptococcus are classified
into several groups that cause different types of infections mediated by
interaction with HSPGs. A representative member of the Group A
Streptococcus is S. pyogenes, the etiologic agent of a variety of human
diseases like pharyngitis and impetigo [80]. S. pyogenes expresses a
wide variety of proteins on its surface to mediate interactions with host
cells from different tissues, among them M proteins, which provide
phagocytosis resistance and bind to DS and HS of cell surfaces [80].
Another member of group A Streptococcus, S. pneumoniae, is the
most important pathogen in meningitis in older children and adults.
This microorganism binds to heparin, HS and chondroitin 4-sulfate in
the colonization of respiratory mucosal epithelial cells causing
pneumonia [81]. 8. agalactiae is included in group B of Streptococcus,
and is the cause for the majority of cases of pediatric infectious
diseases. This pathogen binds to HSPGs on the cellular surface
through alpha-C protein (ACP), which mediates the internalization of
bacteria into ME180 cervical epithelial cells, involving Rho GTPase-
dependent actin rearrangements [82]. S. agalactiae is the causative
agent responsible for neonatal bacterial meningitis, and some studies
have shown that ACP uses GAGs as receptors to adhere to and cross
the blood-brain barrier and invade the central nervous system [83].
Chain length and negative charge on the GAGs are both important to
provide the binding forces between ACP and GAGs, as well as the
GAG species involved in the adhesion, such that GAG expression
patterns may determine the nature and efficiency of bacterial
dissemination during infection [83].

The intestinal tract is a source of many pathogens, including the
Gram-positive bacterium Enterococcus faecalis which is a major cause
of nosocomial infections affecting different tissues [16]. In Caco2 cells,
HSPGs act as receptors in the early stages of infections by enterococci,
and HS and heparin are able to inhibit this binding [84]. HSPGs are
not only implied in recognition and adherence, but also in the
internalization of bacteria in professional and nonprofessional
phagocytes, involving the reorganization of microtubules and
activation of protein kinases. The microorganism can resist specific
killing mechanisms inside these phagocytes and so invasion and
dissemination progresses [85]. Urinary tract infections are usually
caused by E. faecalis, and contrary to what happens in adherence to
other epithelium, neither wild-type bacteria nor glycolipid mutant’s
use GAGs as receptors to bind to uroepitelial cells [86].

Besides pathogens, it is important to study the mechanisms that
normal human microbiota use for adhering to and colonizing cells
because of, among other reasons, the competition with pathogenic
bacteria for the same attachment sites on these cells. Human
microbiota is composed mainly of members of the genus
Lactobacillus. Many studies have been conducted on the factors
involved in the adherence of Lactobacillus to different epithelial cells
including intestinal or vaginal epithelium [87-90], and GAGs have
been described as receptors for adhesion. An adhesin that plays a

fundamental role in attachment of L. salivarus Lv72 is OppA, a soluble
binding protein of an ABC transporter system that bind to HS and
CSC from the epithelial surface [17]. PGs and GAGs are widespread
molecules but some of their functions are still unclear. Not only do
pathogens of different origins take advantage of these molecules in a
direct wary for infection and invasion, but they can also play different
roles in certain alterations. In inflammatory Bowel disease or colitis
severe intestinal inflammation occurs due to the immune responses to
toxic compounds such as endotoxins and enzymes produced by
instestinal microbiota. During this process, degradative GAGs
enzymes are induced in the microbiota, and they act on the intestinal
mucosa GAGs, releasing D-galatosamine and D-glucosamine which
are cytotoxic against the cells. Treatment with antibiotics
mitigates colitis by inhibiting these bacteria [91].

In addition, increased levels of circulating GAGs are found in septic
shock patients and the levels are correlated with mortality. These
released GAGs may be attributed to shedding of endothelial cells
stimulated by proinflammatory substances, especially syndecan-1
which is related to inflammation and promotes leukocyte adherence.
Shedding of GAGs plays a role in the dysregulation of the endothelial
function, resulting in increased permeability in septic shock [92].

HSPG-pathogen interactions could reveal previously unknown
functions for these molecules. Knowledge of the function and
involvement of PGs is important for the development of novel
antimicrobial agents and therapies for infections and other diseases.

Conclusions

HSPGs comprise a reduced and specific group of proteins that
display an enormous structural diversity in their GAG chains which,
along with their ubiquity in all cell types and in the ECM, allow them
to play an essential role in the interaction between bacterial pathogens
and the surface of host cells. Indeed, many pathogenic microorganisms
use these molecules not only as specific receptors for adherence and
attachment, but also in bacterial internalization and invasion during
the infective process. Furthermore, they are involved in different
alterations independent of the presence of pathogens.
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