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Introduction
Nowadays, Histone acetylation, as one of the epigenetic 

mechanisms, is considered in the development of human cancer 
[1,2]. Histone acetylases [HAT] and histone deacetylases [HDACs] are 
responsible for the addition and removal of acetyl-groups to or from 
specific lysine residues located within histone tails and a number of 
non-histone proteins (Table 1) [3,4]. A disequilibrium of the HDACs 
leads to transcriptional repression in genes responsible for regulation 
of proliferation, migration, angiogenesis, differentiation, invasion, and 
metastasis [5-7]. Overall, HDACs is might be as a good biomarker in 
cancer diagnosis. 

Recently, researchers focused on the expression of HDAC isoforms 
in human tumors and, the most important findings on this topic are 
presented here.

HDAC biology

HDACs remove the acetyl moieties from the ε-amino groups 
of lysine residues present within the N-terminal extension of the 
nucleosomal histones, and in turn lead to a more condensed form of 
chromatin, the so-called heterochromatin, and gene silencing. On the 
other hand, histone acetyl transferases [HATs] with cofactor acetyl-
CoA, lead to a more open form of chromatin, the so-called euchromatin 
(Figure 1) [8-11].

HDAC family

At present, there are 18 HDAC isoforms into four classes that 
summarized in Figure 1 [12,13]. The Class I HDACs [HDAC 1, 2, 3 

and 8], which are generally nuclear, ubiquitously expressed in various 
human tissues, and may be more significant in regulating proliferation 
[14]. HDAC2 has been shown to suppress apoptosis in tumor cells [15-18].

Class II HDACs [HDAC 4, 5, 6, 7, 9, and 10], which are selectively 
distributed among tissues, share domains with yeast HDAC-1 [19,20]. 
HDAC4 acts as a repressor of chondrocyte hypertrophy through 
interacting with the myocyte-specific enhancer factor 2C transcription 
factor [21-23] and HDAC7 functions in the negative regulation and 
apoptosis of T-cells reflecting its interaction with the orphan nuclear 
receptor Nur77 . HDAC6, located in the cytoplasm where it acts as 
a tubulin deacetylase, may participate in regulating cell viability in 
response to mis-folded proteins [17]. HDAC6 also has the capacity to 
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 Figure 1: Histone Acetylation mechanism and HDAC isoforms.

Tumor suppressor p53, pRb
Transcription factor UBF, E2F, HIF1a, MEF2, YY1, GATA1

Chaperone HSP90, HSP70
Oncogene Bcl6, c-Myc

Non-histone chromosomal proteins HMG1 and HMG2
Hormone & growth factor signalling ER, b-Catenin, Importin

Cytoskeletal α-Tubulin, Cortactin
DNA binding TCF

Table 1: Examples of Non Histone Proteins.
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bind directly to ubiquitinated proteins through an ubiquitin-binding 
domain, and target cargo proteins for subsequent processing [18].

The Class III HDACs [Sir 1-7], which are homologues of the yeast 
protein Sir 2, require the cofactor NAD+ for their deacetylase function, 
and are not targeted by the currently available HDAC inhibitors [24].

Class IV HDACs [only comprising HDAC-11], which localize in 
the nucleus, exhibit properties of both Class I and Class II HDACs [21] 
All the above HDACs are zinc dependent proteases.

Alteration of HDACs

Alteration of HDACs has been found in both hematological 

malignancies and solid tumors for a long time [25]. Genes coding for 
HDACs have been always found normal in such cancer cells [26], but 
altered expression and aberrant recruitment of HDACs in tumors have 
been found. In colon, breast, prostate, thyroid, cervical, and gastric 
cancers, some HDACs such as HDAC1, HDAC2, HDAC3, HDAC6, 
and SIR 7 have been found over expressed. Aberrant recruitment of 
HDACs results from chromosomal translocations has been found to 
have a causal role in tumorigenesis [27,28].

Histone acetylation

The most extensively used biomarker in HDAC inhibitor trials to 
date has been histone acetylation, in particular H3 and H4. Preclinical 

Cancer HDAC Results

Gastric Carcinoma
HDAC1
HDAC2
HDAC3

78% of cases a moderate or strong acetylation of Histone H4.
Over expression HDAC1, HDAC2 and HDAC 6 in 60%, 32% and 15% case 
respectively.
Over expression HDAC6 show improved survival times that is independent of tumor 
aggressiveness [30]

Colorectal Carcinoma
HDAC1
HDAC2
HDAC3

Moderately expression of Class I HDACs 1, 2 and 3 in glandular and foveolar antral 
and corpus gastric epithelium.
Over Expression of HDAC2 in tumors with nodal metastases and advanced tumor 
stage.
HDAC2 protein expression had independent prognostic impact on overall survival [OS] 
[31,32]. 
Low acetylation of histone H4 in Class I HDACs [33].
Over expression of HDAC1 showed a negative association with patient survival and 
acetylation on H3K9 and H4K16 did not correlate with patient prognosis.
Hyperacetylation of H3 was associated with poor tumor grade and diffuse type 
cancers [34].

Hepatocellular Carcinoma

HDAC1
HDACII

Over expression HDAC1, 2 and 3 in the level of mRNA and protein with overall protein 
expression 37% , 58%  and 73% respectively.
High expression of HDAC1 and HDAC2 was associated with enhanced tumor cell 
proliferation and negative prognostic impact on OS, only HDAC2 had an independent 
prognostic impact [35].
Negative prognostic impact of high HDAC1 mRNA levels on OS [36]
Loss of expression of HDACI isoforms [37].

Pancreatic Carcinoma HDAC1
Over HDAC1 protein expression in hepatocellular carcinomas that correlated with 
higher tumor stage and poor tumor differentiation [38].
Class II HDACs 4,5,6,7 and 10 , higher expression levels of both mRNA and protein 
have been reported in HCC [39].

Brain Tumors                              HDAC9
HDAC11

High HDAC1 expression in 56% of pancreatic carcinomas that had significant 
prognostic impact on OS [40,41].

Prostate Carcinoma

HDAC1
HDAC2
HDAC3
HDAC4

Expression class I HDAC mRNA were lower than class II and IV isoforms.
Low expression of HDAC9 (class II) and HDAC11 (class IV) mRNAs in high-grade 
tumors compared to low-grade tumors.
High histone H3 acetylation levels in high-grade glioblastoma compared to low-grade 
gliomas [42].

Ovarian Carcinoma
HDAC1
HDAC2
HDAC3

High expression HDAC1, 2 and 3 protein in prostate adenocarcinomas and 
expression patterns these isoforms in high-grade Prostatic Intraepithelial Neoplasia 
(PIN) paralleled with invasive cancers. 
Disease-free survival (DFS) in patients with high-level HDAC2 protein expression 
reduced.
Strong HDAC1 and HDAC2 protein expression associated with high Gleason grade 
and with high proliferative capacity [43].
High expression HDAC1 in hormone refractory cancers [44].
High expression HDAC4 in benign prostate hyperplasia,  prostate cancers and 
hormone refractory cancers [45].

Endometrial Carcinoma
HDAC1
HDAC2
HDAC3

Over expression class I HDACs in ovarian carcinoma that positivity rates differ in tumor 
subtypes such as mucinous carcinomas (71%), high-grade serous (64%), clear cell 
(54%) and endometrioid subtypes (36%) and expression was usually higher in strongly 
proliferating tumors. 
Disease Specific patient Survival (DSS) in serous, mucinous, and clear cell carcinomas 
had no statistical significant but in endometrioid ovarian cancer had negative impact on 
patient survival [46,47].

Non-Small Cell Lung Carcinoma 
(NSCL)

HDACI
HDACII

Over expression class I HDAC isoforms in endometrial carcinomas and like in ovarian 
carcinomas, clear cell (83%) and serous subtypes (69%) showed significantly higher 
expression rates of class I HDACs than endometrioid carcinomas.
Strong HDAC1 protein expression but no HDAC2 and HDAC3 were associated with 
poor prognosis.
None of the class I HDACs had independent prognostic impact on DSS [47].
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and clinical studies have shown that there are several advantages of 
measuring histone acetylation. First, histone acetylation is a direct 
downstream modification regulated by HDAC, which can be detected 
within the tumor tissue. Second, histone acetylation can be measured in 
peripheral blood mononuclear cells [PBMCs], which are often taken as 
a surrogate tissue for tumors where biopsies are unobtainable without 
invasive procedures. 

The use of the biomarker for hyperacetylation of histones [both in 
blood lymphocytes and tumor cells] has been useful as a guide to target 
specificity in early studies of HDAC inhibitors, and this biomarker has 
been the most extensively developed so far. Changes of this biomarker 
can be determined via Western blot, flowcytometry analysis or 
immunohistochemical methods.

There are various studies in cancer and tumor tissue that revealed 
changes in the acetylation levels and the expression of the HDAC 
enzymes, which summarized in (Table 2). In hematologic malignancies, 
the aberrant recruitment of HDACs to promoters plays a causal role in 
tumorgenesis [29].

Concluding Remarks
1. Histone deacetylases play a central role in the regulation of 

several cellular mechanisms.

2. The majority of studies showed an enhanced expression of class 
I HDAC isoforms in solid human tumors and was high in locally 
advanced dedifferentiated, strongly proliferating tumors.

3. In some but not all entities elevated class I HDAC expression 
was associated with patient prognosis. 

4. Expression of class II HDACs has been found reduced in 
tumors and high expression of these isoforms in some entities 
predicted better patient outcome. 

5. Since all of these data point to a potential biological role of 
differences in HDAC expression in human tumors, future 
translational studies will focus on the question, whether HDAC 
expression patterns are predictive for response to treatment 
with histone deacetylase inhibitors.
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