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Introduction
The osteogenesis is a complex process that involves an accurate 

control of bone development and growth as well as remodeling during 
postnatal life. Although the understanding of the transcriptional 
control of osteogenesis is increased considerably, the molecular 
regulatory basis is still poorly understood [1]. In the near future, the 
knowledge about the role of transcriptional factors in the control of 
osteoblast differentiation consequent to post-genome will be expected. 
In order to identify the molecular mechanisms useful in the tissue 
regeneration and tissue engineering methodologies of clinical practice 
[2]. Bone development is regulated by 500 genes, particularly Fibroblast 
Growth Factor-4, Bone Morphogenetic Protein-4, lymphoid enhancer 
binding factor-1, cyclin dependent kinase inhibitor-1 and sonic 
hedgehog (FGF4, SHH, BMP4, LEF1 and p21) genes, constitute the first 
regulators of osteogenesis; also homeobox-containing genes as Msx 
sonic hedgehog, distal-less homeobox and paired box (Msx, Dlx, PAX), 
are the best candidates in the control of cranio-facial development and 
organization (Figures 1-3) [3].

HOX Genes
Class I homeobox genes (HOX in mice and HOX in humans), are 

39 transcription factors, mostly involved in the regulation of embryonic 
development program; The HOX gene structure is characterized by a 
sequence of 183 nucleotides encoding a homeodomain of 61 amino 
acid, able to recognize and bind, specific sequence on DNA. Moreover, 
HOX genes are able to activate or express specific genes mainly by 
means of its alpha-helix structure [4,5].

The HOX proteins are located on four chromosomal determining 
four clusters or loci (HOXA Chr 7p15.3, HOXB Chr 17q21.3, HOXC 
Chr 12q13.3 and HOXD Chr 2q31), each containing 9-11 genes. 
Furthermore, the HOX network can be aligned in 13 paralogous 
groups, considering the position of each single gene within the locus 
and sequence similarity of the homeodomain [6].

The HOX network takes part at the embryonic development starting 
from the gastrulation, determining the generation of spatio-temporal of 
embryonic biological structure and also HOX genes play a crucial role 
in the control of “cell memory program”.

The cell memory is a biological process controlled by specific 
gene program, able to regulates the body’s cells fate. The “cell memory 
program” contains whole information about gene functions and critical 
information related to cell cycle that are transferred, through the 
genome, from a cell to another cell using cell division [7]. Thrithorax, 
Polycomb and HOX genes are involved in the control of each phase of 
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the memory program. In details, the Thrithorax gene family, leads to 
the DNA-transition from heterochromatin to euchromatin, promoting 
an open configuration of the DNA and the HOX genes transcription. 
Conversely, Polycomb cluster is able to control the DNA-transition 

Figure 1:  Mesenchymal progenitors that give rise to osteoblasts are initially 
marked by the transcription factor related to homeobox genes. In particolar 
HOXA and HOXD cluster, play a crucial role in the control of osteogenesis.

Figure 2:  The HOX network takes part at the embryonic development starting 
from gastrulation.

Figure 3:  The HOX genes are the controller of the epigenetic change in the 
chromatin structure.
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from euchromatin to heterochromatin, blocking the HOX gene 
expression [7]. The HOX network, ensures the achievement of cell-
specific gene programs through the transcriptional control of the gene 
expression [8]. Finally, Class-I homeobox proteins, regulate the stem 
cells differentiation in one of approximately 300 cellular phenotypes 
present in our body, mainly by means of accurate control of the cell-fate 
memory program [9].

Lymphoid-specific helicase (LSH) functions as a chromatin 
remodeling ATPase in mammals [10]. Since LSH also regulates the 
accessibility of DNA to de novo DNA methyltransferases [11] and LSH 
null mice lose up to 70% of DNA methylation globally [12], it has been 
suggested to play a role in the establishment and maintenance of DNA 
methylation during differentiation of embryonic lineage cells. Recent 
observation revealed that together with histone methyltransferases G9a/
GLP complex, LSH is involved in the developmentally programmed 
DNA methylation, especially at the HOX loci [13]. Mechanistically, Lsh 
and G9a/GLP complex are very likely to maintain the DNA methylation 
via recruitment of DNMTs to the HOX loci [14]. As precise regulation of 
HOX genes is essential for the osteogenesis, investigation the chromatin 
loading of Lsh and the patterns of DNA methylation might create a 
novel direction for the study of the molecular basis that required for 
the osteogenesis. Many evidences have shown the involvement of 
Homeobox genes in bone formation. The upregulation of HOXA2 is 
crucial for repress osteogenesis [10,15]. Recently, it has been studied 
the role of HOXA10 in the control of osteoblasts differentiation; hyper-
expression of HOXA10 was able to activate several osteoblast related 
genes like Osx; Osterix controls bone mineralization and osteoblasts 
differentiation. Therefore, HOXA10 gene was considered a key factor 
for: i) the proper timing, expression of specific osteogenesis markers; ii) 
correct mineral and matrix deposition during osteoblasts maturation 
[11,16].

Conclusion and Future Prospects
Class I homeobox genes are arranged like a biological chip able to 

decode the mechanism that controls the phases of cell differentiation. 
Furthermore, the HOX proteins and could be used like a model to study 
the ability of the cell to assume a specific phenotype during embryonic 
development. The limit of the tissue regeneration is related to the difficult 
at reproduce each single embryonic stage that characterized the cell 
differentiation because the sequence of the activation and repression of 
the specific molecular targets, is not clear yet. Moreover, it has not been 
understood, which system is able to control the determination of the 
different cell phenotypes. In my opinion, The HOX genes are the best 
candidates to play this function. Many evidences confirm the role of 
HOX genes in the control of the cell phenotype and their deregulation 
determine changes in the program of the cell memory, inducing 
morphological malformation, cellular neoplastic transformation and 

recently it has been demonstrated the involvement of HOX genes in 
different metabolic pathologies [3,17,18]. In conclusion, I consider the 
HOX cluster like “the Rosetta stone” of human cell biology.
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