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Abstract
Heart is pumping throughout life of animals ever since embryogenesis. The mammalian heart consists of four 

chambers along with specialized myocardial system for electrical conduction and force production, which guarantees 
the heart to pump efficiently. miR-1, the cardiac specific mi RNA, is suggested to play essential roles in cardiogenesis 
and in regulating physiological function of heart. During early stage of cardio genesis, miR-1 promotes cardiac 
mesoderm induction. In the subsequent morphogenesis, miR-1 controls cell fate of various lineages and the 
balance between proliferation and differentiation so that cardiac chambers could develop normally. In postnatal life, 
miR-1 modulates atrioventricular and ventricular conduction at multiple levels and contributes to the formation of 
organized sarcomere. Advance in the role miR-1 plays in cardiac biological processes have put new perspectives 
on mechanisms of heart diseases.
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Introduction 
The heart which acquires its delicate structure from embryonic 

development pumps uninterruptedly throughout the life of all animals. 
Morphogenesis as well as maintenance of cardiac function requires 
precise regulation of various gene expressions. During cardiogenesis, 
signaling pathways and transcription factors exert spatiotemporal 
control of downstream gene transcription to guarantees cardiac 
morphogenesis progresses properly. In postnatal period, this regulatory 
network which is further joined by large quantity of enzymes and other 
participant’s maintains rhythmic contraction. Some regulators in this 
network are effective in specific stage of life. While others, like GATA4, 
have shown to be essential both for embryonic development and 
postnatal heart function [1,2]. Recently, a novel regulatory mechanism 
involving post-transcriptional regulation by microRNAs (miRNAs) 
have been shown to function in both life stages [3].

MiRNAs are classes of small, non-coding RNAs that regulate target 
mRNAs by interacting with their 3’UTR in a sequence-specific manner 
[4]. Advances in miRNA analysis have made it possible to identify the 
role of miRNAs in heart. Disruption of Dicer allele, which is essential 
for processing of pre-miRNAs into mature form, in early stage of 
cardiogenesis results in profound heart defects, and the embryos die 
from cardiac failure by E12.5 [5]. Cardiac-specific deletion of Dicer 
allele in later stage of development causes enlargement of chambers 
and myocyte hypertrophy that leads to functional defects resemble 
dilated cardiomyopathy [6,7]. These studies indicate that modifications 
in miRNA biogenesis affect both embryonic and adult myocardial 
morphology and function [6].

MiR-1 is most abundantly and specifically expressed in heart [5]. 
Expression of miR-1 can be detected in developing mouse heart as 
early as E8.5, and the expression becomes even more robust after birth 
[8]. MiR-1 null mice manifest morphological, electrophysiological and 
functional defects. mRNA expression microarray analysis of mutant 
and wide-type hearts reveals dysregulation of numerous cardiac 
transcription factor genes. These genes cluster into several categories, 
including regulators of cell cycle, cardiac differentiation and conductive 
system [5]. Here we review the role miR-1 plays in morphogenesis 

during cardiac development and in regulating physiological function 
in postnatal period. 

MiR-1 Modulates Cell Fate Decision and Controls 
Chamber Development during Cardiogenesis

Cell fate decision refers to the process that pluripotent progenitors 
or stem cells adopt characteristics which belong to a specific lineage 
while suppress the potential of other lineages [9]. MiR-1 is suggested 
to regulate lineage-specific determination both in embryonic stem cell 
(ESC) and cardiac progenitors. Over expression of miR-1 in mouse ESC 
promotes mesodermal induction and early cardiac markers expression. 
On the other hand, down regulation of miR-1 in mESCs shows delayed 
differentiation into mesodermal progenitors. MiR-1 also represses a 
number of nonmusical gene expressions, i.e. endoderm markers Afp 
and Hnf4a as well as neuron marker Ncam1 [9]. These data indicate that 
miR-1 plays a major role in promoting the progression of mesodermal 
progenitors by up regulating cardiac mesodermal gene expression 
while down regulating genes belong to other cell lineages. Further 
analysis identifies that the Notch ligand Delta 1 (Dll1) is a direct target 
of miR-1, and the Dll1 knockdown mESCs show greater propensity 
toward cardiac cell fate and form beating cardiomyocyte earlier than 
wide type [9].

MiR-1’s role in determination of cardiac progenitors has also 
been explored by in vivo study. MiR-1 deleted Drosophila shows 
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overabundant progenitor pool and decreased cardioblasts. The Eve 
expressing progenitor cells undergo asymmetric division and give 
rise to two distinct lineages of daughter cells: one is pericardial cell, 
the other is muscle cell. However the Eve+ pericardial cell is missing in 
the miR-1 mutants [10]. This experiment suggests miR-1 expression is 
required for development of the pericardial cell lineage, and its absence 
leads to the missing of entire lineage. In vivo evidence also indicates 
Dll1 as a target of miR-1 [10]. 

Notch pathway mediates cell fate decision by asymmetric expression 
of Notch receptor and Notch ligand Delta between opposing cells [11], 
which eventually guide the distinct biochemical events within the cells 
[12]. The function of Notch pathway in cardiogenesis has also been 
studied extensively. Nemir and colleagues ‘research on ESCs supports 
the idea that inhibition of Notch signaling is essential for mesodermal 
induction of ESC, and eventually myocardial cell fate [13]. An in vivo 
study also shows Notch signaling regulates cardiac progenitor cell fate 
by modulating balance between muscle and non-myogenic cell lineages 
[14]. 

Cardiogenesis is exceptionally sensitive to the dose of Notch and 
Dll. So the quantity of ligand and receptor present on the surface of 
cells is a tightly regulated parameter in the Notch pathway [12]. As a 
novel regulator of cell fate decision, miR-1 repression of Dll 1 and “fine 
tune” the signal exchange in Notch pathway is likely one of the major 
mechanisms. In ESCs, miR-1 down regulation of Dll1 might account for 
inhibition of Notch1 signaling in the process of myocardial progression. 
Nonetheless questions like how expression of miR-1 is induced and 
how ligand and receptor interact with each other in this process need 
to be further explored. In cardiac progenitors undergo asymmetric cell 
division, miR-1 seems to suppress Dll1 and helps maintain active Notch 
receptor in signaling receiving cells. And the Notch receptor regulates 
specific gene expression thus dictates cell lineage. In order to specify the 
detailed mechanism of this process, it is important to examine miR-1’s 
function in asymmetric division. 

What worth mention is that miR-1 regulates cardiac cell fate by 
directing differentiation as opposed to proliferation in Drosophila [10]. 
So it will be interesting to determine whether it exerts similar function in 
mammals. To accommodate an advanced circulation system, mammals 
have adopted hearts with four chambers and the development which is 
a key event in the building plan of mammalian heart. Formation of the 
cardiac chambers displays simultaneous proliferation and differentiation. 
The proliferation and differentiation of chamber myocardium show 
highly-localized regulation which requires expansion of the complexity 
of regulatory network in Drosophila. Developing chambers manifest trans 
mural pattern of growth, with the highest proliferation rate in compact 
layer as well as progressive pattern of differentiation. This regional growth 
and differentiation of chamber myocardium ensues the “ballooning” 
model of chamber formation [3]. There are studies show miR-1 
participates in the regulation of chamber expansion and differentiation. 
The miR-1 transgenic embryos show thin myocardium compact 
layer with decreased cycling myocardium. This is due to premature 
differentiation, early withdrawal from cell cycle, proliferation defect and 
failure of ventricular cardio myocyte expansion caused by excessive miR-
1 [8]. Conversely, miR-1-2 deletion results in cardiac hypertrophy and 
ventricular septum defect (VSD). Gene expression analysis of mutants 
shows up regulation of cardiogenic transcriptional factors compared 
with wide type [5]. According to what mentioned above, miR-1 mediates 
cell cycle arrest and differentiation of cardiomyocyte during chamber 
development. The study also suggests cardiac expression of miR-1 is 
serum response factor (SRF)-dependent [8]. 

SRF has long been acknowledged as a critical regulator for chamber 
differentiation and functional maturation [15]. Cardiac conditional 
knockout (CKO) of SRF results in morphological and functional 
defects, presented as reduced thickness of a trial and ventricular 
compact layer, poor trabeculation and losing rhythmic heart beating, 
pericardial effusion which are due to disrupted sarcomere organization. 
The atrophic heart does not display significant change in proliferation 
rate, yet shows a impaired expression of cardiac specific genes [16,17]. 
The cardiac chamber differentiation process shows inverse relationship 
between proliferation and differentiation. SRF is not considered as a 
inhibitory transfactor for cell cycle, rather it exert gene silencing activity 
through miRNAs [3]. miR-1 mediates cell cycle withdrawal and directly 
targets Hand2 [8]. 

Hand factors are recognized as important regulators for ventricular 
cardiomyocyte proliferation, differentiation, morphogenesis and 
conduction [18]. Homozygous Hand2 null mouse displays a single left-
sided ventricular chamber and aberrant connection of outflow tract 
that is lethal between E9,5-E10. Molecular analysis reveals impaired 
expression of cardiogenic transcription factors without influencing 
cardiomyocyte differentiation markers in mutants. Hand2 is crucial 
for chamber morphogenesis and development of cardiac neural crest-
derived tissues [19], However overdose of Hand2 is also associated 
with heart abnormalities [20]. It is likely that miR-1 exert its negative 
regulation of myocyte proliferation partly via Hand2 during chamber 
differentiation [21]. However chamber formation is a local process, 
whether miR-1 expresses in a region-specific pattern, if so how it is 
regulated remains to be elucidated. However, it is safe to say that miR-
1 induced by SRF helps refining transcription activity and modulates 
chamber development at least partially via targeting Hand2.

MiR-1 Regulates Electrical and Contractile Activity of 
the Heart

Efficient contraction of heart is the result of highly organized 
conductive system and effective electromechanical coupling. Electrical 
stimulation proceeds from apex toward the base in ventricles and 
repolarize in reverse order [22]. Spatial heterogeneous action-potential 
duration and conductance guarantee depolarization and repolarization 
propagate orderly [23]. To ensure the heterogeneity, heart has adopted a 
spatial specific transcriptional network that tightly regulates expression 
of ion channel and gap junction. When stimuli reach working 
cardiomyocyte, it triggers release of calcium which binds to troponin 
C followed by myosin-actin cross-bridge formation. In this process, 
myosin light chain kinase (MLCK) potentiates the force and rate of 
cross-bridge recruitment in cardiomyocyte and may serve as a major 
target in regulation of cardiac contraction [24]. 

Perturbation the dose of miR-1 results in electrophysiological 
and contractile defects. The miR-1 homozygous null mice show 
prolonged QRS complex and prolonged PR and QT intervalson 
Surface electrocardiograph, indicating defects in atrioventricular (AV) 
and ventricular conduction. Echocardiography also reveals severely 
impaired fractional shortening with poor systolic function [25]. 
MiR-1 over expression mice develops frequent atrioventricular block 
of varying degree as evidenced by prolonged PR interval [26]. The 
transgenic mice also show impaired contractile and diastolic function 
that might due to damaged sarcomere assembly [27]. 

The miR-1 deletion mice show elevated Irx4 and down regulated 
Irx5 which is a target of miR-1-2 [5]. Three members of the Iroquois 
homeobox (Irx) family, Irx3, Irx4 and Irx5 have been proved to play 
individual as well as cooperative and antagonistic roles in regulation 
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of electrophysiology. Irx3 establishes fast conduction in His-purkinje 
network [28]. Irx5 builds repolarization gradient of mouse ventricle 
[23]. Irx3; Irx5 double knockout (DKO) mice show AV and ventricular 
conduction defects, indicating a cooperative role of both in the 
modulation of proximal ventricular conduction. There is also an 
antagonistic mechanism between Irx5 and Irx3 in the regulation of 
ventricular depolarization [22]. Cooperation of Irxs happens between 
Irx4 and Irx5 in control of Kcnd2 promoter activation [29]. So precise 
dose of individual Irxs as well as relative ratio of Irxs is crucial for 
establishment of proper conduction. By directly targeting Irx5, miR-1 
may modulate relative ratio between Irxs to regulate AV and ventricular 
conduction. How miR-1 influence expression of other Irxs still need to 
be further addressed.

miR-1 also regulates gap junction-forming and iron channel 
proteins directly [30,31]. miR-1 slows ventricular conduction through 
directly down regulation of Cx43 which expresses in working 
myocardium and facilitates coupling of the high speed conduction 
pathway to the surrounding myocytes [32]. MiR-1 also targets the 
cardiac L-type calcium channel gene CACNA1C (CAV1.2), the main 
calcium channel in heart [31]. SomiR-1 might control electrophysiology 
through targeting multiple levels. But how miR-1 orchestrates different 
levels of regulation needs to be further explored. In the miR-1 up-/
down-regulated mice that manifest abnormal contractile function, 
two sets of genes are dysregulated. For miR-1 over expression mice, 
cardiac MLCK which functions to maintain cardiac contraction and 
sarcomeric assembly is significantly decreased. This is accompanied by 
decrease of calmuldin which is also critical for sarcomere assembly and 
function [27]. As for the miR-1 null mutants, a MLCK isoform, Telokin, 
which is supposed to specifically express in smooth muscle aberrantly 
upregulates in cardiomyocytes [25]. Both increased Telokin and 
decreased cardiac MLCK impair phosphorylation of MLC2 that results 
in defected assembly of the myosin thick filaments. Another study 
also indicates miR-1 plays important role in regulating contractility 
of cardiomyocyte by controlling calcium homeostasis [33]. MiR-1 
mediates expression of different MLCK is forms and controls calcium 
homeostasis to maintain forceful contraction. 

Concluding Remarks
Studies on miR-1’s function in heart have uncovered novel 

mechanisms underlying broad spectrum of cardiac diseases. Although 
miR-1 has not been related to congenital heart deformities, there is 
ever increasing knowledge of miR-1’ role in arrhythmia and cardiac 
dysfunction. Expression of miR-1 is lost in myotonic dystrophy patients, 
concomitant with up regulation of its targets Cx43 and CAV1.2 which 
may account for arrhythmia occurred in these patients [31]. Besides, its 
expression is significantly reduced in chronic a trial fibrillation patients 
[34], although the implication has not been fully understood. miR-1 
may also play a role in ischemic arrhythmia in patients with coronary 
heart disease [30]. In samples from end-stage heart failure patients and 
hypertrophic cardiomyopathy mouse model, miR-1 is significantly 
down regulated [33,35]. There is also study shows miR-1 is involved in 
the development of diabetic cardiac dysfunction in mouse model [36]. 

MiR-1 is an example that a single miRNA plays critical roles in 
cardiogenesis as well as maintaining normal cardiac function. However, 
the target genes identified thus far are only a small fraction of the total 
genes directly respond to miR-1 in the heart. The application of genome-
wide enhancer/repressor screen has aided in uncovering multiple 
factors which functions in common pathways targeted by miR-1 and 
other miRNAs [37]. With increasing knowledge about functions of 
miRNAs in heart, we are expecting to see a regulatory network consists 

of interrelated miRNAs that intertwine with well-described signaling 
and transcription factor networks to determine the development and 
pathologenesis of the heart [21]. 
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