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Abstract
Introduction: In the context of axon regeneration, certain molecules containing the basal lamina, particularly 

fibronectin, laminin and heparin sulfate promote axonal elongation in vitro and in vivo. This structure could lead the 
axons to distal stump in nerve defect repair.

Material and Methods: In twenty male Wistar rats, a critical defect of 15 mm was created in the sciatic nerve, 
which was bridged by an acellular muscle graft, which were obtained from the gluteus medius muscle of two donor 
rats, and chemically treated to cellular extraction by protocol consisted of 7 h in distilled water changed three times 
every 2-3 h, one night in Triton detergent, and 24 h in deoxycholate. After 90 days, the explanted pieces of sciatic 
nerve with grafts were carved and cut into seven pieces equally in all animals; pieces were processed in resin 
(toluidine blue staining) and also for paraffin embedding: hematoxylin-eosin and Masson trichrome.

Results: Microscopically, proximal ends appeared as a normal nerve, with proper, regular and orderly fascicular 
distribution, perfectly defined by its three wraps, with little connective tissue. At the graft, regenerated axons used 
the muscle as a bridge, with many small nerve fascicles separated by host tissue and plenty of blood vessels. Axons 
followed their basal lamina, defining small fascicles with large vessels and abundant connective tissue. At the distal 
end, there was no a clear division in fascicles in some animals. There was little connective tissue between the fibers 
and the epineurium was quite developed.

Conclusions: The selected biological method for chemical treatment of skeletal muscle achieves acellular 
grafts. We successfully could repair a critical lesion of the sciatic nerve in rats using this acellular muscle graft. 
Acellular muscle that we employed as a graft provides a bridge tool for the advancement of the regenerating axons, 
perhaps due to the structural proximity of laminin to nerve sheaths.
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Introduction
The purpose of a nerve graft is to replace a defect so it can lead the 

maximum number of regenerated nerve fibers to their target organs. 
But the limited availability of nerve tissue that serves as autograft 
and the incomplete functional recovery obtained in most cases and 
problems from the donor area, have other alternatives. Striated muscle 
contains basal lamina tubes from sarcolemmal, which persist even 
when myocytes found within them, have been destroyed chemically or 
thermally.

In the context of axon regeneration, certain molecules containing 
the basal lamina, particularly fibronectin, laminin and heparan sulfate 
promote axonal elongation in vitro and in vivo [1-8]

In a broader biological context it has been shown that cell-laminin 
binding in vitro affects phenomena as diverse as cell migration, cell 
division, and maintenance of the differentiated phenotype [9,10].

The basal lamina Schwann cell-derived seems to be a very durable 
structure. It survives the penetration by the invasion of macrophages 
during acute phases of Wallerian degeneration or to primary 
demyelination, and persists in the distal stumps chronically denervated, 
where it surrounds the cytoplasm of Schwann cells which constitute the 
survivors Büngner bands.

Presumably the basal lamina can undergo repair time, because their 
redundant loops associated with Büngner bands newly denervated are 
absent in the endoneurium of chronically denervated nerves [10,11].

Axons and Schwann cells grow preferentially along the inner side 
of the basal lamina rather than in association with its exterior, the 
extracellular face.

Objective
Study the ability of peripheral nerve regeneration in non-repairable 

injuries, by using allogeneic acellular muscle grafts, to study the role of 
the basal lamina.

Material and Methods
From two donor rats, muscle grafts for all animals to study 

subsequently obtained from the gluteus medius. Special detail was given 
to the section of the grafts along the longitudinal axis of the muscle, 
not to disrupt the histological structure of muscle fibers. Obtaining 
acellular grafts was completed following the decellularization protocol 
published by Baptista in 2009, the British Society of Medicine and 
Biology [12]. It consists of 7 h in distilled water needs to be changed 
three times every 2-3 h; one night in a detergent Triton® X-100 (# 
BDH-Prolabo, Briare. France) and 24 h in Sodium deoxycholate (5 
g/l, Merck, Darmstadt, Germany); washed in 0.4 M phosphate buffer, 
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pH 7.4 at 25°C; the whole process is repeated; finally passed to another 
buffer and stored at 4°C.

After intraperitoneal preoperative anesthesia, and by posterolateral 
approach, the sciatic nerve of twenty Wistar male rats was exposed 
and transected generating a 15 mm defect. An acellular muscle 
block was added, where the epimisium-epinerium were sutured with 
polypropylene 7/0 at each end (Figure 1).

Rats were sacrificed at 90-100 days post-surgery (body-weight of 
450-500 g). Same surgical approach was repeated dissecting segment 
sciatic nerve including muscle graft, performing in a second time, a 
post-fixation of samples for 4 h at 40°C, to prevent cell shrinkage in 
paraformaldehyde solution (4 % w/v, 4 g of solute are dissolved in 100 
ml of solution) in 0,1 Molarity phosphate buffer (pH=7,4). Samples 
were obtained for macro and microscopic preparations. They were 
cut into seven fragments, all different from each other in cross section 
and size, but equal in all parts, dedicating pairs to inclusion in resin 
(blue toluidine staining) and impairs for paraffin embedding and 
hematoxylin-eosine and Masson trichrome (Figures 2 and 3).

Results
Microscopical findings

Section 1 (proximal end): At the proximal end, with usual 
techniques of hematoxylin-eosin and Masson trichrome staining, 
a characteristic structure of healthy peripheral nerve, rounded, 
organized in homogeneous bundles, separated from each other, with 
symmetry in the density of axons with myelin coverage regularly seen 
depending on Schwann cells. With Masson trichrome method, is clearly 
distinguished an abundant epineurium and relatively low perineurium 
and endoneurium. The space between the fascicles is relatively broad 
and nerve fibers are clearly differentiated from connective tissue by 
Masson method. Blood vessels are in normal proportions, one for every 
four fields 100x on average (Figure 3).

Section 2 (just proximal to the graft): Section 2, which also 
belongs to the proximal end, discovers, with toluidine blue staininG, 
relatively normal nerve fibers although it shows some irregular 
thickened, pleated shapes and alterations of the myelin sheath, 
evidence of degeneration and degradation mechanisms suffered after 
neurotmesis, which also move retrograde. It is occupied by cords of 
regenerated fibers, which seem to want to organize themselves to form 
mature structures. Typically, axons remain parallel to the major axis 
of the graft paths, although sets of fibers are seen in other orientations. 
In longitudinal sections, the proximal end of the nerves of both groups 
of animals, show a normal arrangement of epineurium as well as both 
fibrillar and cellular elements that constitute them. Likewise, it differs 
myelin sheath of nerve fibers and connective tissue of endoneurium 
and perineurium.

Section 3 (proximal graft suture): An abundant inflammatory 
infiltrate around the muscle fascicles decellularized is observed. We 
observe a regenerative stroma colonized by cords of axons, loosely 
packed and quite disorganized, but with some direction in parallel 
(in the longitudinal sections). In some animals, we have found some 
irregular nerve fascicles which could be considered small neuromas, 
because of their morphology and cellular organization. In some areas 
of the implant, bundles of nerve fibers that penetrate, not very deep, are 
observed between acellular muscle fibers.

Section 4 (into the graft): At this level is often observed small nerve 
fascicles closed to acellular muscle fibers, although with an abundance 
connective tissue separating nerve fibers from muscle. Nerve fibers are 
of varied size, coexisting very thick myelinated fibers with other thin 
and non-myelinated, hardly identifiable in this size of sections (Figure 
4). In the perineurium, abundant blood vessels are distinguished, 

Figure 1: Suture of the graft. Detail of suture muscle graft acellular sciatic 
nerve defect, with Prolene sutures 7/0.

Figure 2: Diagram of the sections of each piece. Scheme protocol sizing of 
each histological piece. The tie on left side means the Vicryl suture to mark the 
proximal end after dissecting the piece. The wires in the middle of the piece 
are the proximal and distal sutures of the graft, leaving the sides of the ends 
of the sciatic nerve. Division into 7 segments, all different from each other in 
order to recognize them. Impairs slices are intended for inclusion in paraffin 
and smaller, for thin slices and inclusion in resin.

Figure 3: Section 1 (proximal end). With Masson trichrome staining, the 
collagen fibers can be seen dyed green in the epineurium and perineurium. 20x 
detail to observe the organized structure of a nerve with signs of regeneration, 
which maintains homogeneity in their fascicles (Masson trichrome staining; 
20x magnification).
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ensuring good irrigation regenerative tissue. In addition to the nerve 
bundles near the muscle fibers, they have inflammatory cells, especially 
in relation to acellular muscle fibers.

Section 5 (distal graft suture): In this region, it shows nerve 
fascicles that run on the surface of acellular muscle, although both 
are always separated by abundant connective tissue structures, along 
a random path. Inside the nerve trunks, connective tissue is more lax 
and less abundant. Some slices show nerve fascicles regenerated into 
the graft, with the arrangement of a nerve completely regenerated, 
eg, forming fascicles, surrounded by well-organized epineurium and 
relatively small amount of perineurium and endoneurium.

Section 6 (distal to the graft): It shows the presence of a number 
of minifascicles with myelinated axons, which colonize the distal 
stump. These groups are usually distributed over the periphery of 
the cut, leaving a central more unpopulated area. Myelin thickness at 
this level is less than the above, and the diameter of the nerve fibers 
themselves. Epineurium is well developed and it has moderate amount 
of perineurium and endoneuro. In some sections, the grouping of 
several axons associated with the process of a Schwann cell is observed. 
No inflammatory cells were observed.

Section 7 (distal end): In the distal stump, it was observed from 
1 to 4 nerve fascicles relatively normal. Axons form cords of various 
elements, which turn out to be continuity of those small bundles of the 
central segments (in the longitudinal sections) (Figure 5).

Axon density: It is kept in the center slices at the graft level and 
distal end, an average of 63 axons per field (36-89), which get through 
the graft and reaching the distal stump of the nerve.

Axon diameter: The average of the diameters is not a significant 
data, the variety between fibers within the same section (0.071 microns 
average). is achieved not decipher any distribution thereof; we have 
found the number of nerve fibers is lower in the more peripheral areas, 
but it has not yet seen that at this level the difference in the average 
diameter of axons is significant, compared to the average diameter 
central fields.

Myelin thickness: Prior to grafting, the average value of 0.00062 is 
(0.00061 to 0.000625). At graft level, the average myelin is 0.00039 mm 
(from 0.000375 to 0.000405). Distal to the graft, the average myelin is 
0.0005389 (0.00053 to 0.000545).

Electron microscopical results in distal stump: The regenerated 
nerve graft shows the typical characteristics of myelinated and 
unmyelinated fibers. Myelinated fibers have a varying size (Figure 6), 
all within the same nervous fasciculus. They are distinguished either 

by the myelin sheath that surrounds them, although the core of the 
Schwann cell is found only in some sections, in others only see a section 
of the membrane. Schwann cells show typical characteristics: abundant 
rough endoplasmic reticulum, free polyribosomes, mitochondria, 
nucleus and chromatin condensation some near the cell membrane. 
Myelin presents, depending on the section plane of the myelin sheath, 
a clear organization in concentric layers more particularly in sections 
perpendicular to the major axis. In some areas, we can see dilations of 
the myelin sheath containing cytoplasm of Lantermann schmidt sulci 
(Figure 7).

The unmyelinated fibers, which are not seen with light microscopy, 
are observed in the electron microscope, with his usual characteristic: 
wraps cytoplasm of Schwann cells surrounding the bundles of nerve 
fibers, but without forming myelin (Figure 6). They measure a tenth 
of myelin fibers. Although smaller, unmyelinated fibers have the same 
microstructure as myelinated: neurotubules, and some mitochondria 
neurofilament.

Both types of fibers are separated from connective tissue by a basal 
lamina membrane surrounding the Schwann cell (Figure 7). Outside 
the basal lamina, connective space in which they can be distinguished 
collagen fiber bundles, endoneural fibroblasts (Figure 7) and blood 
vessels is. The endoneurial fibroblasts are characterized by a core 
of chromatin, grouped into submembranal clusters, and not very 
abundant cytoplasm with numerous free polyribosomes and cisterns 
of rough endoplasmic reticulum. The extensions of these cells are very 

Figure 4: Section 4 (thin slices of the graft). Separated, irregular in size 
fascicles. Abundant connective tissue between the fascicles and lax, many 
glasses (Blue toluidine 40x).

Figure 5: Section 7 (distal stump). After distal bundle of nerve. Among the 
abundant vascularization, it highlights the great central blood vessel (Masson 
trichrome 10x).

Figure 6: Electron microscopal image. Ultrastructural image of a regenerating 
nerve fascicle. The variety of sizes characteristic of myelinated fibers is 
distinguished. Myelinated nerve fibers show a normal relationship with 
Schwann cells, some of whose nucleus (CS) in this section. Unmyelinated 
nerve fiber bundles, surrounded by cytoplasm of Schwann cells (arrows) are 
distinguished. 10000x increases.
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want behaves like a block of empty channels that appear to offer little 
or no resistance to cell growth. More importantly, the walls of the tubes 
containing molecules such as laminin and fibronectin, which possess 
domains known to support neurite outgrowth and cells of the neural 
crest in vitro [22-26].

Conclusions
The biological method for chemically treating selected skeletal 

muscle graft decellularization achieved adequate thereof by chemical 
detergents protocol selected. This method achieves a mioplasma Almost 
complete cleavage and other cellular components while preserving the 
basement membrane tubes (not affect the laminin or type IV collagen), 
and the original contour of the muscle fibers.

Shown criteria for this type of graft has to achieve optimal 
regeneration. First, the sample block acellular muscle similarly to the 
mechanical rigidity of a healthy nerve with great biocompatibility 
and minimal induction of an autoimmune response against foreign 
material, since it is considered allogeneic graft. Brings the extracellular 
matrix components of natural origin, such as collagen I/IV and 
laminin, which has a profound impact on the fate of nerve axons bridge 
and stimulate growth neuronal cells, in terms of migration and cellular 
repair.

Acellular muscle fibers basal lamina define tubes that could support 
axonal regeneration, acting as matrices for the growth of axons, when 
grafted into a nerve defect. The basal lamina of the muscle is likely 
to be able to “guide” the growing axons. It succeeds in restocking 
regenerating axons in distal stump, reaching a macroscopic and 
microscopic appearance of nerve after 90 days postoperative follow.
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Acellular muscle graft coaxially aligned regenerate the nerve we 
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