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Fixed Point Iteration
 Consider the paradigmatic fixed point iteration

1 0(x )x F=  					    (1)

to locate fixed point a, F(a)=a of contracting function F(x). We write 
x1−a=F(x0) a and have by power series expansion that

2 3
1 0 0 0

1 1( )( ) ( )( ) ( )( ) .....
2! 3!

x a F a x a F a x a F a x a′ ′′ ′′′− = − + − + − +  (2)

implying that if 0<|F’(x)|<1 near x=a, namely, if F(x) is indeed 
contracting, then the fixed point iteration converges linearly, and if 
F’(a)=0, then the fixed point iteration converges quadratically, and so 
on.

Suppose now that we are seeking root a, f(a)=0, f’(a) ≠ 0, of function 
f(x). To secure a quadratic iterative method we rewrite f(x)=0 as the 
equivalent fixed point problem

( ), ( ) ( ) ( )x F x F x x w x f x= = +     (3)

for weight function w(x),w(a) ≠ 0, which we seek to fix to our advantage. 
For a quadratic method we need w(x) to be such that

( ) 1 ( ) ( ) ( ) ( ) 0F x w x f x w x f x′ ′ ′= + + =     (4)

for x near a. Since f (a)=0, we choose to ignore w’(x) f(x) in the above 
equation, to have w(x)=−1/f’(x), and with it, Newton’s method

0
1 0 0 0 0 0

0

, , ( )fx x u u f f x
f

= − = =
′                   (5)

which is actually quadratic

2 3
1 0 0

1 ( ) (( ) )
2

fx a x a o x a
f
′′

− = − + −
′     (6)

where f’=f’(a) ≠ 0, f”=f”(a) < ∞, and where x0 is the iterative input and 
x1 the iterative output.

From the two zero conditions

(x) 1 f ( ) ( ) ( ) ( ) 0, (x) f ( ) ( ) 2 ( ) ( ) ( ) ( ) 0F x w x f x w x F x w x f x w x f x w x′ ′ ′ ′′ ′′ ′ ′ ′′= + + = = + + =  (7)

we obtain, after ignoring f(x) w”(x) in the second of equations (7), the 
system of equations

1
2 0

f f w
f f w
′ −     

=     ′′ ′ ′     
   (8)

which we solve for w(x) as

1
det

0 2

det
2

f
f

w
f f
f f

− 
 ′ =

′ 
 ′′ ′ 

             (9)

to have Halley’s method
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1 0 0 0 0 0 0 02

0 0 0 0 0 0
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0 0
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0 2 2 1 ,12 1 ( / ) udet 22

f
f f fx x f x f x u u

f f f f f ff f
f f

− 
 ′ ′ = + = − = − =
′ ′ ′′ ′−  ′′ ′− ′′ ′ 

  (10)

which is, indeed, cubic
2

3 4
1 0 02

1 3 2 (x a) ((x a) )
12

f f fx a o
f

′′ ′ ′′′−
− = − + −

′
               (11)

provided that f(a)=0, but f’(a) ≠ 0

Requesting that F(a)=a, F’(a)=0, F”(a)=0, F’”(a)=0, we similarly 
obtain the method
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 ′ 
 ′′ ′ ′ ′′− = + = −
′ ′ ′ ′′ ′′′− + 
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 ′′′ ′′ ′ 

  (12)

which is quartic
3 2

4 5
1 0 03

1 3 4 ( ) (( ) )
24

f f f f f fx a x a o x a
f

′′ ′ ′′ ′′′ ′ ′′′′− +
− = − + −

′
  (13)

provided that f’=f’(a) ≠ 0.

Higher order single-point methods are readily obtained by 
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requesting higher order derivatives of F(x)=x+w(x) f(x) to to zero at 
x=a, f (a)=0 [1].

A Recursive Determination of the Higher Order 
Iterative Function

There are various ways to recursively generate a new higher order 
iterative function F(x) of eq. (1) from a known lower order one. Traub 
[2] has suggested such a rational recursive formula. If, for example, 
F(x)=F2(x) is such that

2 2( ) , ( ) 0,F a a F a′= =  				                 (14)

then

2 2
3

2

( ) ( )( ) , 2
( )

nF x xF xF x n
n F x

′−
= =

′−
 			               (15)

is such that

3 3 3( ) , ( ) 0, ( ) 0F a a F a F a′ ′′= = =  			              (16)

with which the iterative method x1=F3(x0) to locate fixed point a, F(a)=a 
becomes cubic

3 4
1 0 0

1 ( )( ) (( ) ).
12

x a F a x a O x a′′′− = − − + −  		                (17)

Instead of rational formula (15) we suggest the product formula

3 2 2 2
1( ) ( ), 2F x F F F x n
n

′= + − =  			                (18)

with which we still have third order convergence

2 3 4
1 0 0

1 (3 ( ) ( ))(x a) O((x a) ).
12

x a F a F a′′ ′′′− = − − + −  	              (19)

For example, for Newton’s method F2(x)=x–f(x)/f’(x). Using 
formula (18) we obtain by it the method

20 0
1 3 0 3 0 0 0 0 0

0 0

( ), ( ) ,
2
f fx F x F x x u u u
f f
′′

= = − − =
′ ′

 	                (20)

which is, indeed, cubic
2

3 4
1 0 02

1 3 ( ) (( ) )
6

f f fx a x a O x a
f

′′ ′ ′′′−
− = − + −

′
 	               (21)

provided that f’=f’(a) ≠0.

Iterative method (20) is also obtained from Halley’s method of eq. 
(10) using the approximation

10 0
0 0

0 0

1 1(1 u ) 1 .
2 2

f f u
f f

−′′ ′′
− = +

′ ′
 			                  (22)

Further, if F3(x) is such that

3 3 3( ) , ( ) 0, ( ) 0F a a F a F a′ ′′= = =  			              (23)

then

1
1( ) ( ), 3n n n nF x F F F x n
n+ ′= + − =  			                 (24)

is such that

4 4 4 4( ) , ( ) 0, ( ) 0, ( ) 0F a a F a F a F a′ ′′ ′′′= = = =  		                (25)

and the iterative method x1=F4(x0) to locate fixed point a is quartic
(4) 4 5

1 0 0
1 ( ) (( ) ).
72

x a F x a O x a− = − + −  		                 (26)

It is well known that the modified Newton’s method

1 2 0 2
( )( ), ( )
( )

f xx F x F x x m
f x

= = −
′

			                 (27)

converges quadratically to a root of any multiplicity m ≥ 1. From 
equation (24) we derive the third order method

2 2
1 3 0 3

1 ( ) ( )( ), ( ) (3 ) ,
2 2 ( ) ( )

f x f xx F x F x x m m u m u u
f x f x
′′

= = − − − =
′ ′

             (28)

Indeed, assuming that

( ) ( ) ( ), ( ) 0mf x x a g x g a= − ≠ 			                 (29)

we obtain for the method in eq. (28)

2
3 4

1 0 02 2

(3 ) ( ) (( ) )
2

m B mACx a x a O x a
m A

+ −
− = − + −                  (30)

where A=g(a), B=g’(a), C=g”(a), and m is the multiplicity index of 
repeating root a [3].

From eq. (29) we have

2
2

( ) 1 2 ( ) ( ) (( ) )
( ) ( )

f x g a x a O x a
f x m m g a

′ ′ 
= − − + − ′ 

 	                (31)

by which we may, knowing an x close to a, estimate m.

A One-Sided Third-Order Two-Step, or Chord, Method
Having computed x1=x0 – f0/f

’
0 we return to correct it as the mid-

point method
0 0 0

2 0 0 0
0

0 00 1

(x ) (x ) ,11 1 (x )
22 2

f f fx x x u
ff uf x x

= − = − =
′  ′ −′ + 

 

 	              (32)

which is now cubic, or third order
2

3 4
2 0 02

1 6 (x a) O((x a) ).
24

f f fx a
f

′′ ′ ′′′−
− = − + −

′
                    (33)

See also Traub [2] page 164 eq. (8-12).

The modified method

0
2 0

0 0 0

4
23 ( )
3

fx x
f f x u

= −
′ ′+ −

			                (34)

is cubic

2 3 3
2 0 0

1 ( ) (x a) O((x a) )
4

fx a
f
′′

− = − + −
′

                                       (35)

and one sided. At least asymptotically, if x0−a > 0, then also x2−a > 0, 
and if x0−a < 0, then also x2 − a < 0

Using the approximation
1 ( ) ( )( )
2

f x f x uf x u
u

− −′ − =  		   	                (36)

equation (32) becomes the two-step, or chord, method
2 1

2 0 0 2 0 0 2 0 0
0

1 (1 ) (1 r r ) u , r ,
1

fx x u or x x r u or x x
r f

= − = − + = − + + =
−   (37)

where u0=f0/f
’
0 , x1=x0 − u0, f1=f(x1). All three methods of eq. (37) are 

cubic
2 3 2 3 2 3 3

2 0 2 0 2 0 0
1 1 1( ) (x a) , x a ( ) (x a) , ( ) (x a) (( ) ).
4 2 4

f f fx a x a O x a
f f f
′′ ′′ ′′

− = − − = − − = − + −
′ ′ ′

  (38)

See Traub [2-4].

Convergence of this method is also one sided.
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Construction of High-Order Iterations by Undetermined 
Coefficients

Halley’s method, or for that matter any other higher order method, 
can be constructed by writing δx, x1=x0 + δx, as a power series of 
u0=f0/f

’
0 , or even of merely f0=f(x0). For example, we write the quadratic

2
1 0 0 0x x Pf Qf= + +  				                  (39)

and then sequentially fix the undetermined coefficients P and Q for 
highest attainable order of convergence.

Thus, at first we have from eq. (39) that
2

1 0 0(1 )( ) (( ) )x a Pf x a O x a′− = + − + −  		             (40)

and we set P=−1/f’0 . With this P we have next that

2 2 3
1 0 0( )( ) (( ) )

2
fx a f Q x a O x a
f
′′

′− = + − + −
′

 	               (41)

and we set 
0

3
0 0

1 ,
2

fP Q
f f

′′
= − = −

′ ′
 				                    (42)

with which the polynomial method of eq. (20) is recovered.

Doing the same to the rational method

0
1 0 0

0

P Qfx x f
R Sf
+

= +
+  				                (43)

we determine by power series expansion that cubic convergence is 
assured for P=−1/f00,

Q=0, R=1, S=−f”0/(2f’2 0 ), with which the classical Halley’s method 
of eq. (10) is recovered.

Quartic and Quintic Multistep Methods
The rational two-step method (a generalization of the method in 

eq. (37)) of Ostrowski [5] appendix G,
2 3 1

2 0 0 0 0 1 0 0
0

1 (1 2 4 ....) , ( ),
1 2

frx x u x r r r u f f x u r
r f

−
= − = − + + + + = − =

−   (44)

is quartic
2

4 5
2 0 03

1 (3 2 ) (x a) O((x a) ).
24

f f f fx a
f

′′ ′′ ′ ′′′−
− = − + −

′
                   (45) 

Traub [2,3,6-8]

See also page 184 eq. (8-78). 

The polynomial in r method

2 0
2 0 0 0

0

- (1 2 ) , ,fx   x r r u  u  
f

= + + =
′

 		                   (46)

is also quartic

2 4 5
2 0 03

1- (15 - 2 )( - ) (( - ) ).
24

′′
′′ ′ ′′′= +

′
fx a f f f x a O x a
f

 (47)

The multistep method

2 1
2 0 0 3 2

0 0

1 1, ,
1 1 2

f fx x u x x r
r r f f

= − = − =
− −

 	               (48)

is quintic
2 2

5 6
3 0 04

1 (3 ( ) (( ) ).
24

f f f fx a x a O x a
f

′′ ′′ ′ ′′′−
− = − + −

′
                   (49)

Sextic and Octic Multistep Methods
The multistep method

2 02 1
2 0 0 3 2 0

0 0 0

1(1 2 ) , , ,
1 3

ff frx x r r u x x r u
r f f f

−
= − + + = − = =

′ ′+
 (50)

is sextic
2

6 7
3 0 04

1 ( 15 2 ) ( ) (( ) ).
144

f f f f fx a x a O x a
f

′ ′′′ ′′ ′ ′′′− +
− = − + −

′
 (51)

The method

2 22 1 2
3 2

0 1

( ) , (1 2 3 (1 2 )) 0, ,f x f fx x g r r s r f r s
g f f

′ ′= − = − + − + = =
′  (52)

is octic
2 2 3 2

8 9
3 0 07

1 ( 15 2 )(27 2 ) (x a) O((x a) ).
1152

f f f f f f f f f fx a
f

′′ ′′ ′ ′′′ ′′ ′ ′′ ′′′ ′ ′′′′− + + −
− = − + −

′  (53) 
[6,9]

Contrarily converging super-quadratic methods
We write

0 1
2 0 0 0 1 1 1 0 0

0 0

(1 Pr) , , , ( ),f fx x u u r f f x x x u
f f

= − + = = = = −  (54)

for undetermined coefficient P, and have
2 3

2 0 0
1 (1 )(x a) O((x a) ).
2

fx a P
f
′′

− = − − + −
′  		                  (55)

We request that

2(1 ) 2 ( )f fP k
f f
′′ ′′

− =
′ ′  				                   (56)

for parameter k, by which the iterative method in eq. (54) turns into
2

2 0 0(1 ) 4x x r u kr= − + +  			                 (57)

for any constant k, and
2 2 3

2 0 0( ) ( ) (( ) ).fx a k x a O x a
f
′′

− = − + −
′

 		                  (58)

This super-quadratic method converges from above if k>0, and 
from below if k<0

The interest in the method
01

2 0 0 1 0 0 1 1 0
0 0

1 , , ( ), ,
1

ffx x u x x u f f x r u
r f f

= − = − = = =
′−

  (59)

is that it ultimately converges oppositely to Newton’s method,
2 3

2 0 0
1 ( ) (( ) )
2

fx a x a O x a
f
′′

− = − − + −
′  		                (60)

as is seen by comparing eq. (60) with eq. (6).

The average of Newton’s method and the method of eq. (59) is 
cubic,

3 4
1 2 0 0

1 1( ) ( ) (( ) ).
2 6

fx x a x a O x a
f
′′′

+ − = − + −
′

                             (61)

Alternaingly Converging Super-Linear and Super-
Cubic Methods

We start by modifying Newton’s method

0
1 0

0

(1 ) , 0fx x k k
f

= − + ≥
′  				                  (62)

to have
2

1 0 0- ( - ) (( - ) )x -a k x a O x a= +  			                 (63)

indicating that, invariably, the method converges, at least asymptotically, 
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alternatingly. For k > 0, if x0 − a > 0, then x1 − a < 0, and vice versa. For 
a higher-order alternating method we rewrite the originally quartic 
method of eq. (46) as

2 0 1
2 0 0 0 1 0 0

0 0

(1 ) , , , ( )f fx x r Qr u u r f f x u
f f

= − + + = = = −
′                 (64)

for the undetermined coefficient Q, and have that
2 3 4

2 0 0
1( ) ( ) (( ) ), ( 2).
4

fx a k x a O x a k Q
f
′′

− = − − + − = −
′   (65)

This super cubic method converges alternatingly if parameter k > 0.

Correction for Multiple Roots by Undetermined 
Coefficients

We rewrite Newton’s method as

1 0 0x x Pu u= − =
′

 				                  (66)

for undetermined coefficient P, and have that for a root of multiplicity 
m ≥ 1

2 3
1 0 0 02(1 )( ) ( ) (( ) )P P Bx a x a x a O x a

m m A
− = − − + − + −  (67)

where A=g(a), B=g’(a) for g(x) in eq. (29). Quadratic convergence is 
restored, as is well known, with P=m.

With P=m(1−k), k<0 the modified Newton’s method of eq. (66) 
becomes superliner and ultimately of alternating convergence [10].

Next, we rewrite the method in eq. (37) as

1
2 0 0 1 1 1 0 0

0

, , ( ),fPx x u r f f x x x u
Q r f

= − = = = −
−               (68)

and seek to fix correction coefficients P and Q so that convergence 
remains cubic even in the event that root a is of multiplicity m > 1. By 
power series expansion we determine that

-1-1( ) , 1, 1 1mmP Q m P Q if m
m

= = > = = =                               (69)

upholds cubic convergence

2
3 4

2 0 02 2

2( 1) ( ) (( ) )
2

mB m ACx a x a O x a
m A

− −
− = − + −                      (70)

where A=g(a), B=g’(a),C=g”(a) for g(x) in eq. (29)

The method
1

2 0 1( ) , (2 ), , 1
( 1)

m

m

mx P Qr u P m m Q m
m

+

−= − + = − = >
−

 	            (71)

is also cubic
2

3 4
2 0 02 2

( 2) 2( 1) ( ) (( ) )
2

m B m ACx a x a O x a
m A

+ − −
− = − + −                (72)

where A=g(a), B=g’(a), C=g”(a) for g(x) in eq. (29) [11-13].

Correction of Halley’s Method for Multiple Roots
We rewrite Halley’s method of eq. (10) for the undetermined 

coefficient P and Q as

0
1 0 02

0 0 0

Pfx x f
Qf f f

′
= −

′ ′′−  				                    (73)

and determine by power series expansion that for
12, 1P Q
m

= = +  				                 (74)

convergence remains cubic for a root of any multiplicity m ≥ 1

2
3 4

1 0 02 2

( 1) 2 ( ) (( ) )
2

m B mACx a x a O x a
m A

+ −
− = − + −                  (75)

where A=g(a), B=g’(a),C=g”(a) for g(x) in eq. (29) [11,12].

Use of the Taylor-Lagrange formula
We write the second order version of the Taylor-Lagrange formula

2
0 0 0 0 0

1( ) ( ) ( ) ( ) ( ),
2

f x f x x f x xf x x f x x xδ δ δ ξ ξ ξ′ ′′= + = + + < < +   (76)

and take f(x1=x0 + δx)=0, ξ=x0 to obtain the iterative method
2

1 0 0 0 0
1, 0 ( ) ( ) ( ).
2

x x x f x xf x x f xδ δ δ′ ′′= + = + +                       (77)

We approximate the solution of the increment equation
2

0 0 0
1 0
2

f xf x fδ δ′ ′′+ + =  				                 (78)

or, for that matter, any such higher order algebraic equation, by the 
power series

2 3 4
0 0 0 0 0( ....)x P Qf Rf Sf Tf fδ = + + + + +  		               (79)

and have upon substitution and collection that

2 2 2 3
0 0 0 0 0 0 0 0 0 0 0

1 1(1 ) ( ) ( ) ( ) ... 0
2 2

Pf Qf P f f Rf PQf f Sf Q f PRf f′ ′ ′′ ′ ′′ ′ ′′ ′′+ + + + + + + + + =   (80)

from which we have that
2 2

0 0 0 0
0

1 1 1, , , ( ) , ( )
2 2

P Q P s R PQs S Q PR s T QR PS s
f

= − = − = − = − + = − +
′   (81)

where s0=f”
0 /f

’
0

The methods
2 2 3

1 0 0 0 2 0 0 0 0x x Pf Qf and x x Pf Qf Rf= + + = + + +                       (82)

or
2

1 0 0 0 2 0 0 0 0
1 1 1(1 ) , (1 ) , , ,
2 2 2

f fx x u u x x u u u u s u us
f f

′′
= − + = − + + = = =

′ ′  (83)

are both cubic
2

3 4 3 4
1 0 0 2 0 02

1 3 1( ) ( ) , ( ) (( ) ),
6 3

f f f fx a x a O x a x a x a O x a
f f

′′ ′ ′′′ ′′′−
− = − + − − = − − + −

′ ′
  (84)

provided that f’(a) ≠0.

The method
20 0 0

1 0 0 0 0 0 2
0 0

(3 ) 1( ) , , , ,
2 2

f f f m mx x P Qu u u u P Q m
f f

′′ −
= − + = = = =

′ ′
  (85)

converges cubically as well to a root of any multiplicity m ≥ 1
2

3 4
1 0 02 2

(3 ) 2 ( ) (( ) )
2

m B mACx a x a O x a
A m

+ −
− = − + −                (86)

where A=g(a), B=g’(a),C=g”(a) for g(x) in eq. (29).

Still Higher Order Methods
Starting with

2 3
0 0 0 0 0 0

1 1( ) ( ) ( ),
2 6

f x f x x f xf x f x f x x xδ δ δ δ ξ ξ δ′ ′′ ′′′= + = + + + < < +   (87)

we obtain the iterative method

2 3
1 0 0 0 0 0

1 1, 0
2 6

x x x f xf x f x fδ δ δ δ′ ′′ ′′′= + + + + =                    (88)

where
2 3

0 0 0 0( ...)x P Qf Rf Sf fδ = + + + +                                                  (89)

with



Citation: Fried I (2014) The Systematic Formation of High-Order Iterative Methods. J Appl Computat Math 3: 165 doi:10.4172/2168-9679.1000165

Page 5 of 5

Volume 3 • Issue 4 • 1000165
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

3 2 2 2 21 1 1 1 1, , ( ), ( ).
2 6 2 2

P Q P f R P Qf P f S P Q f PRf P Qf
f

′′ ′′ ′′′ ′′ ′′ ′′′= − = = + = + +
′

  (90)

The methods
2 2 3

1 0 0 0 0 2 0 0 0 0 0( ) ( )x x P Qf Rf f and x x P Qf Rf Sf f= + + + = + + + +   (91)

are both quartic

4 5
2 0 0

1 ( ) (( ) )
24

fx a x a O x a
f
′′′′

− = − + −
′                    (92)

provided that f’(a) ≠ 0.

Unknown Root Multiplicity
The two single-step methods

0 0
1 0 2 0 02

0 0 0 0

,f fx x m x x f
f f f f

′
= − = −

′ ′ ′′−
               (93)

converge contrarily to root a of any multiplicity m
2 3 2 3

1 0 0 2 0 0
1 1( ) (( ) ), ( ) (( ) )B Bx a x a O x a x a x a O x a
m A m A

− = − + − − = − − + −   (94)

where A=g(a), B=g’(a) for g(x) in eq. (29). Their average is a cubic 
method

2
3 4

3 0 0 3 1 22 2

( 1) 2 1( ) (( ) ), ( )
2 2

B m ACmx a x a O x a x x x
A m
− −

− = − + − = +   (95)

where A=g(a), B=g’(a),C=g”(a) for g(x) in eq. (29).
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