Journal of

The Systematic Formation of High-Order Iterative Methods

Isaac Fried*
Department of Mathematics, Boston University, Boston, MA 02215, USA

Abstract

Fixed point iteration and the Taylor-Lagrange formula are used to derive, some new, efficient, high-order, up to octic, methods to iteratively locate the root, simple or multiple, of a nonlinear equation. These methods are then systematically modified to account for root multiplicities greater than one. Also derived, are super-quadratic methods that converge contrarily, and super-linear and super-cubic methods that converge alteratingly, enabling us, not only to approach the root, but also to actually bound and bracket it.

Keywords: Fixed point iteration; The generation of high order iterative functions; The Taylor-Lagrange formula; High-order iterative methods; Undetermined coefficients; Contrary and alternating convergence; Root bracketing

Fixed Point Iteration

Consider the paradigmatic fixed point iteration

$$
\begin{equation*}
x_{1}=F\left(\mathrm{x}_{0}\right) \tag{1}
\end{equation*}
$$

to locate fixed point a, $\mathrm{F}(\mathrm{a})=\mathrm{a}$ of contracting function $\mathrm{F}(\mathrm{x})$. We write $\mathrm{x}_{1}-\mathrm{a}=\mathrm{F}\left(\mathrm{x}_{0}\right) \mathrm{a}$ and have by power series expansion that

$$
\begin{equation*}
x_{1}-a=F^{\prime}(a)\left(x_{0}-a\right)+\frac{1}{2!} F^{\prime \prime}(a)\left(x_{0}-a\right)^{2}+\frac{1}{3!} F^{\prime \prime \prime}(a)\left(x_{0}-a\right)^{3}+. \tag{2}
\end{equation*}
$$

implying that if $0<\left|\mathrm{F}^{\prime}(\mathrm{x})\right|<1$ near $\mathrm{x}=\mathrm{a}$, namely, if $\mathrm{F}(\mathrm{x})$ is indeed contracting, then the fixed point iteration converges linearly, and if $F^{\prime}(a)=0$, then the fixed point iteration converges quadratically, and so on.

Suppose now that we are seeking root $\mathrm{a}, \mathrm{f}(\mathrm{a})=0, \mathrm{f}(\mathrm{a}) \neq 0$, of function $f(x)$. To secure a quadratic iterative method we rewrite $f(x)=0$ as the equivalent fixed point problem

$$
\begin{equation*}
x=F(x), F(x)=x+w(x) f(x) \tag{3}
\end{equation*}
$$

for weight function $\mathrm{w}(\mathrm{x}), \mathrm{w}(\mathrm{a}) \neq 0$, which we seek to fix to our advantage. For a quadratic method we need $w(x)$ to be such that

$$
\begin{equation*}
F^{\prime}(x)=1+w^{\prime}(x) f(x)+w(x) f^{\prime}(x)=0 \tag{4}
\end{equation*}
$$

for x near a. Since $\mathrm{f}(\mathrm{a})=0$, we choose to ignore $\mathrm{w}^{\prime}(\mathrm{x}) \mathrm{f}(\mathrm{x})$ in the above equation, to have $\mathrm{w}(\mathrm{x})=-1 / \mathrm{f}(\mathrm{x})$, and with it , Newton's method

$$
\begin{equation*}
x_{1}=x_{0}-u_{0}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}}, f_{0}=f\left(x_{0}\right) \tag{5}
\end{equation*}
$$

which is actually quadratic

$$
\begin{equation*}
x_{1}-a=\frac{1}{2} \frac{f^{\prime \prime}}{f^{\prime}}\left(x_{0}-a\right)^{2}+o\left(\left(x_{0}-a\right)^{3}\right) \tag{6}
\end{equation*}
$$

where $\mathrm{f}^{\prime}=\mathrm{f}(\mathrm{a}) \neq 0, \mathrm{f}^{\prime \prime}=\mathrm{f}^{\prime}(\mathrm{a})<\infty$, and where x_{0} is the iterative input and x_{1} the iterative output.

From the two zero conditions
$F^{\prime}(\mathrm{x})=1+\mathrm{f}^{\prime}(x) w(x)+f(x) w^{\prime}(x)=0, F^{\prime \prime}(\mathrm{x})=\mathrm{f}^{\prime \prime}(x) w(x)+2 f^{\prime}(x) w^{\prime}(x)+f(x) w^{\prime \prime}(x)=0$ (7)
we obtain, after ignoring $f(x) w^{\prime \prime}(x)$ in the second of equations (7), the system of equations

$$
\left[\begin{array}{cc}
f^{\prime} & f \tag{8}\\
f^{\prime \prime} & 2 f^{\prime}
\end{array}\right]\left[\begin{array}{l}
w \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{l}
-1 \\
0
\end{array}\right]
$$

which we solve for $\mathrm{w}(\mathrm{x})$ as

$$
w=\frac{\operatorname{det}\left[\begin{array}{ll}
-1 & f \tag{9}\\
0 & 2 f^{\prime}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{ll}
f^{\prime} & f \\
f^{\prime \prime} & 2 f^{\prime}
\end{array}\right]}
$$

to have Halley's method

$$
x_{1}=x_{0}+\frac{\operatorname{det}\left[\begin{array}{ll}
-1 & f_{0} \tag{10}\\
0 & 2 f_{0}^{\prime}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{l}
{\left[\begin{array}{l}
\prime \\
f_{0}^{\prime}
\end{array}\right.} \\
f_{0}^{\prime \prime}
\end{array} 2 f_{0}^{\prime}\right.} \mathbf{f}=x_{0}-\frac{2 f_{0}^{\prime}}{2 f_{0}^{\prime 2}-f_{0} f_{0}^{\prime \prime}} f_{0}=x_{0}-\frac{1}{1-\frac{1}{2}\left(f_{0}^{\prime \prime \prime} \mid f_{0}^{\prime}\right) u_{0}} u_{0}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}}
$$

which is, indeed, cubic

$$
\begin{equation*}
x_{1}-a=\frac{1}{12} \frac{3 f^{\prime \prime 2}-2 f^{\prime} f^{\prime \prime \prime}}{f^{\prime 2}}\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}+o\left(\left(\mathrm{x}_{0}-\mathrm{a}\right)^{4}\right) \tag{11}
\end{equation*}
$$

provided that $\mathrm{f}(\mathrm{a})=0$, but $\mathrm{f}(\mathrm{a}) \neq 0$
Requesting that $F(a)=a, F^{\prime}(a)=0, F^{\prime \prime}(a)=0, F^{\prime \prime}(a)=0$, we similarly obtain the method

$$
x_{1}=x_{0}+\frac{\operatorname{det}\left[\begin{array}{lll}
-1 & f_{0} & 0 \tag{12}\\
0 & 2 f_{0}^{\prime} & 1 f_{0} \\
0 & 3 f_{0}^{\prime \prime} & 3 f_{0}^{\prime}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{lll}
f_{0}^{\prime} & f_{0} & 0 \\
f_{0}^{\prime \prime} & 2 f_{0}^{\prime} & f_{0} \\
f_{0}^{\prime \prime \prime} & 3 f_{0}^{\prime \prime} & 3 f_{0}^{\prime}
\end{array}\right]} f_{0}=x_{0}-\frac{6 f_{0}^{\prime 2}-3 f_{0} f_{0}^{\prime \prime}}{6 f_{0}^{3}-6 f_{0} f_{0}^{\prime} f_{0}^{\prime \prime}+f_{0}^{2} f_{0}^{\prime \prime \prime}} f_{0}
$$

which is quartic

$$
\begin{equation*}
x_{1}-a=\frac{1}{24} \frac{3 f^{\prime \prime 3}-4 f^{\prime} f^{\prime \prime} f^{\prime \prime \prime}+f^{\prime 2} f^{\prime \prime \prime \prime}}{f^{\prime 3}}\left(x_{0}-a\right)^{4}+o\left(\left(x_{0}-a\right)^{5}\right) \tag{13}
\end{equation*}
$$

provided that $\mathrm{f}=\mathrm{f}(\mathrm{a}) \neq 0$.
Higher order single-point methods are readily obtained by

[^0]requesting higher order derivatives of $F(x)=x+w(x) f(x)$ to to zero at $\mathrm{x}=\mathrm{a}, \mathrm{f}(\mathrm{a})=0$ [1].

A Recursive Determination of the Higher Order Iterative Function

There are various ways to recursively generate a new higher order iterative function $F(x)$ of eq. (1) from a known lower order one. Traub [2] has suggested such a rational recursive formula. If, for example, $\mathrm{F}(\mathrm{x})=\mathrm{F}_{2}(\mathrm{x})$ is such that

$$
\begin{equation*}
F_{2}(a)=a, F_{2}^{\prime}(a)=0 \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
F_{3}(x)=\frac{n F_{2}(x)-x F_{2}^{\prime}(x)}{n-F_{2}^{\prime}(x)}, n=2 \tag{15}
\end{equation*}
$$

is such that

$$
\begin{equation*}
F_{3}(a)=a, F_{3}^{\prime}(a)=0, F_{3}^{\prime \prime}(a)=0 \tag{16}
\end{equation*}
$$

with which the iterative method $x_{1}=F_{3}\left(x_{0}\right)$ to locate fixed point a, $F(a)=a$ becomes cubic

$$
\begin{equation*}
x_{1}-a=-\frac{1}{12} F^{\prime \prime \prime}(a)\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right) \tag{17}
\end{equation*}
$$

Instead of rational formula (15) we suggest the product formula

$$
\begin{equation*}
F_{3}(x)=F_{2}+\frac{1}{n} F_{2}^{\prime}\left(F_{2}-x\right), n=2 \tag{18}
\end{equation*}
$$

with which we still have third order convergence

$$
\begin{equation*}
x_{1}-a=\frac{1}{12}\left(3 F^{\prime \prime}(a)^{2}-F^{\prime \prime \prime}(a)\right)\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}+\mathrm{O}\left(\left(\mathrm{x}_{0}-\mathrm{a}\right)^{4}\right) \tag{19}
\end{equation*}
$$

For example, for Newton's method $F_{2}(x)=x-f(x) / f(x)$. Using formula (18) we obtain by it the method

$$
\begin{equation*}
x_{1}=F_{3}\left(x_{0}\right), F_{3}\left(x_{0}\right)=x_{0}-u_{0}-\frac{f_{0}^{\prime \prime}}{2 f_{0}^{\prime}} u_{0}^{2}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}} \tag{20}
\end{equation*}
$$

which is, indeed, cubic

$$
\begin{equation*}
x_{1}-a=\frac{1}{6} \frac{3 f^{\prime \prime 2}-f^{\prime} f^{\prime \prime \prime}}{f^{\prime 2}}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right) \tag{21}
\end{equation*}
$$

provided that $\mathrm{f}=\mathrm{f}(\mathrm{a}) \neq 0$.
Iterative method (20) is also obtained from Halley's method of eq. (10) using the approximation

$$
\begin{equation*}
\left(1-\frac{1}{2} \frac{f_{0}^{\prime \prime}}{f_{0}^{\prime}} \mathrm{u}_{0}\right)^{-1}=1+\frac{1}{2} \frac{f_{0}^{\prime \prime}}{f_{0}^{\prime}} u_{0} \tag{22}
\end{equation*}
$$

Further, if $\mathrm{F}_{3}(\mathrm{x})$ is such that

$$
\begin{equation*}
F_{3}(a)=a, F_{3}^{\prime}(a)=0, F_{3}^{\prime \prime}(a)=0 \tag{23}
\end{equation*}
$$

then

$$
\begin{equation*}
F_{n+1}(x)=F_{n}+\frac{1}{n} F_{n}^{\prime}\left(F_{n}-x\right), n=3 \tag{24}
\end{equation*}
$$

is such that

$$
\begin{equation*}
F_{4}(a)=a, F_{4}^{\prime}(a)=0, F_{4}^{\prime \prime}(a)=0, F_{4}^{\prime \prime}(a)=0 \tag{25}
\end{equation*}
$$

and the iterative method $\mathrm{x}_{1}=\mathrm{F}_{4}\left(\mathrm{x}_{0}\right)$ to locate fixed point a is quartic

$$
\begin{equation*}
x_{1}-a=\frac{1}{72} F^{(4)}\left(x_{0}-a\right)^{4}+O\left(\left(x_{0}-a\right)^{5}\right) \tag{26}
\end{equation*}
$$

It is well known that the modified Newton's method

$$
\begin{equation*}
x_{1}=F_{2}\left(x_{0}\right), F_{2}(x)=x-m \frac{f(x)}{f^{\prime}(x)} \tag{27}
\end{equation*}
$$

converges quadratically to a root of any multiplicity $\mathrm{m} \geq 1$. From equation (24) we derive the third order method

$$
\begin{equation*}
x_{1}=F_{3}\left(x_{0}\right), F_{3}(x)=x-\frac{1}{2} m(3-m) u-m^{2} \frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)} u^{2}, u=\frac{f(x)}{f^{\prime}(x)} \tag{28}
\end{equation*}
$$

Indeed, assuming that

$$
\begin{equation*}
f(x)=(x-a)^{m} g(x), g(a) \neq 0 \tag{29}
\end{equation*}
$$

we obtain for the method in eq. (28)

$$
\begin{equation*}
x_{1}-a=\frac{(3+m) B^{2}-m A C}{2 m^{2} A^{2}}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right) \tag{30}
\end{equation*}
$$

where $A=g(a), B=g^{\prime}(a), C=g$ "(a), and m is the multiplicity index of repeating root a [3].

From eq. (29) we have

$$
\begin{equation*}
\left(\frac{f(x)}{f^{\prime}(x)}\right)^{\prime}=\frac{1}{m}-\frac{2}{m^{2}} \frac{g^{\prime}(a)}{g(a)}(x-a)+O\left((x-a)^{2}\right) \tag{31}
\end{equation*}
$$

by which we may, knowing an x close to a , estimate m .

A One-Sided Third-Order Two-Step, or Chord, Method

Having computed $x_{1}=x_{0}-f_{0} / f_{0}$ we return to correct it as the midpoint method

$$
\begin{equation*}
x_{2}=x_{0}-\frac{f\left(\mathrm{x}_{0}\right)}{f^{\prime}\left(\frac{1}{2} x_{0}+\frac{1}{2} x_{1}\right)}=x_{0}-\frac{f\left(\mathrm{x}_{0}\right)}{f^{\prime}\left(\mathrm{x}_{0}-\frac{1}{2} u_{0}\right)}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}} \tag{32}
\end{equation*}
$$

which is now cubic, or third order

$$
\begin{equation*}
x_{2}-a=\frac{1}{24} \frac{6 f^{\prime \prime 2}-f^{\prime} f^{\prime \prime \prime}}{f^{\prime 2}}\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}+\mathrm{O}\left(\left(\mathrm{x}_{0}-\mathrm{a}\right)^{4}\right) \tag{33}
\end{equation*}
$$

See also Traub [2] page 164 eq. (8-12).
The modified method

$$
\begin{equation*}
x_{2}=x_{0}-\frac{4 f_{0}}{f_{0}^{\prime}+3 f^{\prime}\left(x_{0}-\frac{2}{3} u_{0}\right)} \tag{34}
\end{equation*}
$$

is cubic

$$
\begin{equation*}
x_{2}-a=\frac{1}{4}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}+\mathrm{O}\left(\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}\right) \tag{35}
\end{equation*}
$$

and one sided. At least asymptotically, if $x_{0}-a>0$, then also $x_{2}-a>0$, and if $\mathrm{x}_{0}-\mathrm{a}<0$, then also $\mathrm{x}_{2}-\mathrm{a}<0$

Using the approximation

$$
\begin{equation*}
f^{\prime}\left(x-\frac{1}{2} u\right)=\frac{f(x)-f(x-u)}{u} \tag{36}
\end{equation*}
$$

equation (32) becomes the two-step, or chord, method

$$
\begin{equation*}
x_{2}=x_{0}-\frac{1}{1-r} u_{0} \text { or } x_{2}=x_{0}-(1+r) u_{0} \text { or } x_{2}=x_{0}-\left(1+\mathrm{r}+\mathrm{r}^{2}\right) \mathrm{u}_{0}, \mathrm{r}=\frac{f_{1}}{f_{0}}, \tag{37}
\end{equation*}
$$

where $\mathrm{u}_{0}=\mathrm{f}_{0} / \mathrm{f}_{0}, \mathrm{x}_{1}=\mathrm{x}_{0}-\mathrm{u}_{0}, \mathrm{f}_{1}=\mathrm{f}\left(\mathrm{x}_{1}\right)$. All three methods of eq. (37) are cubic

$$
\begin{equation*}
x_{2}-a=\frac{1}{4}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}, \mathrm{x}_{2}-\mathrm{a}=\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}, x_{2}-a=\frac{1}{4}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}+O\left(\left(x_{0}-a\right)^{3}\right) . \tag{38}
\end{equation*}
$$

See Traub [2-4].
Convergence of this method is also one sided.

Construction of High-Order Iterationsby Undetermined Coefficients

Halley's method, or for that matter any other higher order method, can be constructed by writing $\delta \mathrm{x}, \mathrm{x}_{1}=\mathrm{x}_{0}+\delta \mathrm{x}$, as a power series of $\mathrm{u}_{0}=\mathrm{f}_{0} / \mathrm{f}_{0}$, or even of merely $\mathrm{f}_{0}=\mathrm{f}\left(\mathrm{x}_{0}\right)$. For example, we write the quadratic

$$
\begin{equation*}
x_{1}=x_{0}+P f_{0}+Q f_{0}^{2} \tag{39}
\end{equation*}
$$

and then sequentially fix the undetermined coefficients P and Q for highest attainable order of convergence.

Thus, at first we have from eq. (39) that

$$
\begin{equation*}
x_{1}-a=\left(1+P f^{\prime}\right)\left(x_{0}-a\right)+O\left(\left(x_{0}-a\right)^{2}\right) \tag{40}
\end{equation*}
$$

and we set $\mathrm{P}=-1 / \mathrm{f}_{0}$. With this P we have next that

$$
\begin{equation*}
x_{1}-a=\left(\frac{f^{\prime \prime}}{2 f^{\prime}}+f^{\prime 2} Q\right)\left(x_{0}-a\right)^{2}+O\left(\left(x_{0}-a\right)^{3}\right) \tag{41}
\end{equation*}
$$

and we set

$$
\begin{equation*}
P=-\frac{1}{f_{0}^{\prime}}, Q=-\frac{f_{0}^{\prime \prime}}{2 f_{0}^{\prime 3}} \tag{42}
\end{equation*}
$$

with which the polynomial method of eq. (20) is recovered.
Doing the same to the rational method

$$
\begin{equation*}
x_{1}=x_{0}+\frac{P+Q f_{0}}{R+S f_{0}} f_{0} \tag{43}
\end{equation*}
$$

we determine by power series expansion that cubic convergence is assured for $\mathrm{P}=-1 / \mathrm{f00}$,
$\mathrm{Q}=0, \mathrm{R}=1, \mathrm{~S}=-\mathrm{f}^{\prime}{ }_{0} /\left(2 \mathrm{f}^{2}{ }_{0}\right)$, with which the classical Halley's method of eq. (10) is recovered.

Quartic and Quintic Multistep Methods

The rational two-step method (a generalization of the method in eq. (37)) of Ostrowski [5] appendix G,

$$
\begin{equation*}
x_{2}=x_{0}-\frac{1-r}{1-2 r} u_{0}=x_{0}-\left(1+r+2 r^{2}+4 r^{3}+\ldots .\right) u_{0}, f_{1}=f\left(x_{0}-u_{0}\right), r=\frac{f_{1}}{f_{0}} \tag{44}
\end{equation*}
$$

is quartic

$$
\begin{equation*}
x_{2}-a=\frac{1}{24} \frac{f^{\prime \prime}\left(3 f^{\prime \prime 2}-2 f^{\prime} f^{\prime \prime \prime}\right)}{f^{\prime 3}}\left(\mathrm{x}_{0}-\mathrm{a}\right)^{4}+\mathrm{O}\left(\left(\mathrm{x}_{0}-\mathrm{a}\right)^{5}\right) \tag{45}
\end{equation*}
$$

Traub [2,3,6-8]
See also page 184 eq. (8-78).
The polynomial in r method

$$
\begin{equation*}
x_{2}=x_{0}-\left(1+r+2 r^{2}\right) u_{0}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}} \tag{46}
\end{equation*}
$$

is also quartic

$$
\begin{equation*}
x_{2}-a=\frac{1}{24} \frac{f^{\prime \prime}}{f^{\prime 3}}\left(15 f^{\prime \prime 2}-2 f^{\prime} f^{\prime \prime \prime}\right)\left(x_{0}-a\right)^{4}+O\left(\left(x_{0}-a\right)^{5}\right) \tag{47}
\end{equation*}
$$

The multistep method

$$
\begin{equation*}
x_{2}=x_{0}-\frac{1}{1-r} u_{0}, x_{3}=x_{2}-\frac{1}{1-2 r} \frac{f_{2}}{f_{0}}, r=\frac{f_{1}}{f_{0}} \tag{48}
\end{equation*}
$$

is quintic

$$
\begin{equation*}
x_{3}-a=\frac{1}{24} \frac{f^{\prime \prime 2}\left(3 f^{\prime \prime 2}-f^{\prime} f^{\prime \prime \prime}\right.}{f^{\prime 4}}\left(x_{0}-a\right)^{5}+O\left(\left(x_{0}-a\right)^{6}\right) \tag{49}
\end{equation*}
$$

Sextic and Octic Multistep Methods

The multistep method

$$
\begin{equation*}
x_{2}=x_{0}-\left(1+r+2 r^{2}\right) u_{0}, x_{3}=x_{2}-\frac{1-r}{1+3 r} \frac{f_{2}}{f_{0}^{\prime}}, r=\frac{f_{1}}{f_{0}}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}} \tag{50}
\end{equation*}
$$

is sextic

$$
\begin{equation*}
x_{3}-a=\frac{1}{144} \frac{f^{\prime} f^{\prime \prime \prime}\left(-15 f^{\prime \prime 2}+2 f^{\prime} f^{\prime \prime \prime}\right)}{f^{\prime 4}}\left(x_{0}-a\right)^{6}+O\left(\left(x_{0}-a\right)^{7}\right) \tag{51}
\end{equation*}
$$

The method

$$
\begin{equation*}
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{g^{\prime}}, g^{\prime}=\left(1-2 r+3 r^{2}-s\left(1+2 r^{2}\right)\right) f^{\prime} 0, r=\frac{f_{1}}{f_{0}}, s=\frac{f_{2}}{f_{1}} \tag{52}
\end{equation*}
$$

is octic
$x_{3}-a=\frac{1}{1152} \frac{f^{\prime \prime 2}\left(-15 f^{\prime \prime 2}+2 f^{\prime} f^{\prime \prime \prime}\right)\left(27 f^{\prime \prime 3}+2 f^{\prime} f^{\prime \prime} f^{\prime \prime \prime}-f^{\prime 2} f^{\prime \prime \prime \prime}\right)}{f^{\prime 7}}\left(\mathrm{x}_{0}-\mathrm{a}\right)^{8}+\mathrm{O}\left(\left(\mathrm{x}_{0}-\mathrm{a}\right)^{9}\right)$.
$6,9]$

Contrarily converging super-quadratic methods

$$
\begin{align*}
& \text { We write } \\
& x_{2}=x_{0}-(1+\operatorname{Pr}) u_{0}, u_{0}=\frac{f_{0}}{f_{0}}, r=\frac{f_{1}}{f_{0}}, f_{1}=f\left(x_{1}\right), x_{1}=x_{0}-u_{0} \tag{54}
\end{align*}
$$

for undetermined coefficient P, and have

$$
\begin{equation*}
x_{2}-a=\frac{1}{2} \frac{f^{\prime \prime}}{f^{\prime}}(1-P)\left(\mathrm{x}_{0}-\mathrm{a}\right)^{2}+\mathrm{O}\left(\left(\mathrm{x}_{0}-\mathrm{a}\right)^{3}\right) \tag{55}
\end{equation*}
$$

We request that

$$
\begin{equation*}
\frac{f^{\prime \prime}}{f^{\prime}}(1-P)=2 k\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2} \tag{56}
\end{equation*}
$$

for parameter k , by which the iterative method in eq. (54) turns into

$$
\begin{equation*}
x_{2}=x_{0}-(1+r) u_{0}+4 k r^{2} \tag{57}
\end{equation*}
$$

for any constant k, and

$$
\begin{equation*}
x_{2}-a=k\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\left(x_{0}-a\right)^{2}+O\left(\left(x_{0}-a\right)^{3}\right) \tag{58}
\end{equation*}
$$

This super-quadratic method converges from above if $\mathrm{k}>0$, and from below if $\mathrm{k}<0$

The interest in the method

$$
\begin{equation*}
x_{2}=x_{0}-\frac{1}{1-r} u_{0}, x_{1}=x_{0}-u_{0}, f_{1}=f\left(x_{1}\right), r=\frac{f_{1}}{f_{0}}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}} \tag{59}
\end{equation*}
$$

is that it ultimately converges oppositely to Newton's method,

$$
\begin{equation*}
x_{2}-a=-\frac{1}{2} \frac{f^{\prime \prime}}{f^{\prime}}\left(x_{0}-a\right)^{2}+O\left(\left(x_{0}-a\right)^{3}\right) \tag{60}
\end{equation*}
$$

as is seen by comparing eq. (60) with eq. (6).
The average of Newton's method and the method of eq. (59) is cubic,

$$
\begin{equation*}
\frac{1}{2}\left(x_{1}+x_{2}\right)-a=\frac{1}{6} \frac{f^{\prime \prime \prime}}{f^{\prime}}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right) \tag{61}
\end{equation*}
$$

Alternaingly Converging Super-Linear and SuperCubic Methods

We start by modifying Newton's method

$$
\begin{equation*}
x_{1}=x_{0}-(1+k) \frac{f_{0}}{f_{0}^{\prime}}, k \geq 0 \tag{62}
\end{equation*}
$$

to have

$$
\begin{equation*}
x_{1}-a=-k\left(x_{0}-a\right)+O\left(\left(x_{0}-a\right)^{2}\right) \tag{63}
\end{equation*}
$$

indicating that, invariably, the method converges, at least asymptotically,
alternatingly. For $k>0$, if $x_{0}-a>0$, then $x_{1}-a<0$, and vice versa. For a higher-order alternating method we rewrite the originally quartic method of eq. (46) as

$$
\begin{equation*}
x_{2}=x_{0}-\left(1+r+Q r^{2}\right) u_{0}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}}, r=\frac{f_{1}}{f_{0}}, f_{1}=f\left(x_{0}-u_{0}\right) \tag{64}
\end{equation*}
$$

for the undetermined coefficient Q , and have that

$$
\begin{equation*}
x_{2}-a=-k\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right), k=\frac{1}{4}(Q-2) \tag{65}
\end{equation*}
$$

This super cubic method converges alternatingly if parameter $\mathrm{k}>0$.

Correction for Multiple Roots by Undetermined Coefficients

We rewrite Newton's method as

$$
\begin{equation*}
x_{1}=x-P u_{0} \quad u_{0}=- \tag{66}
\end{equation*}
$$

for undetermined coefficient P , and have that for a root of multiplicity $\mathrm{m} \geq 1$

$$
\begin{equation*}
x_{1}-a=\left(1-\frac{P}{m}\right)\left(x_{0}-a\right)+\frac{P}{m^{2}} \frac{B}{A}\left(x_{0}-a\right)^{2}+O\left(\left(x_{0}-a\right)^{3}\right) \tag{67}
\end{equation*}
$$

where $A=g(a), B=g^{\prime}(a)$ for $g(x)$ in eq. (29). Quadratic convergence is restored, as is well known, with $\mathrm{P}=\mathrm{m}$.

With $\mathrm{P}=\mathrm{m}(1-\mathrm{k}), \mathrm{k}<0$ the modified Newton's method of eq. (66) becomes superliner and ultimately of alternating convergence [10].

Next, we rewrite the method in eq. (37) as

$$
\begin{equation*}
x_{2}=x_{0}-\frac{P}{Q-r} u_{0}, r=\frac{f_{1}}{f_{0}}, f_{1}=f\left(x_{1}\right), x_{1}=x_{0}-u_{0} \tag{68}
\end{equation*}
$$

and seek to fix correction coefficients P and Q so that convergence remains cubic even in the event that root a is of multiplicity $\mathrm{m}>1$. By power series expansion we determine that

$$
\begin{equation*}
P=Q=\left(\frac{m-1}{m}\right)^{m-1}, m>1, P=Q=1 \text { if } m=1 \tag{69}
\end{equation*}
$$

upholds cubic convergence

$$
\begin{equation*}
x_{2}-a=\frac{m B^{2}-2(m-1) A C}{2 m^{2} A^{2}}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right) \tag{70}
\end{equation*}
$$

where $A=g(a), B=g^{\prime}(a), C=g$ "(a) for $g(x)$ in eq. (29)
The method

$$
\begin{equation*}
x_{2}=-(P+Q r) u_{0}, P=m(2-m), Q=\frac{m^{m+1}}{(m-1)^{m-1}}, m>1 \tag{71}
\end{equation*}
$$

is also cubic

$$
\begin{equation*}
x_{2}-a=\frac{(m+2) B^{2}-2(m-1) A C}{2 m^{2} A^{2}}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right) \tag{72}
\end{equation*}
$$

where $A=g(a), B=g^{\prime}(a), C=g^{\prime \prime}(a)$ for $g(x)$ in eq. (29) [11-13].

Correction of Halley's Method for Multiple Roots

We rewrite Halley's method of eq. (10) for the undetermined coefficient P and Q as

$$
\begin{equation*}
x_{1}=x_{0}-\frac{P f_{0}^{\prime}}{Q f_{0}^{\prime 2}-f_{0} f_{0}^{\prime \prime}} f_{0} \tag{73}
\end{equation*}
$$

and determine by power series expansion that for

$$
\begin{equation*}
P=2, Q=1+\frac{1}{m} \tag{74}
\end{equation*}
$$

convergence remains cubic for a root of any multiplicity $\mathrm{m} \geq 1$

$$
\begin{equation*}
x_{1}-a=\frac{(m+1) B^{2}-2 m A C}{2 m^{2} A^{2}}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right) \tag{75}
\end{equation*}
$$

where $A=g(a), B=g^{\prime}(a), C=g$ "(a) for $g(x)$ in eq. (29) $[11,12]$.

Use of the Taylor-Lagrange formula

We write the second order version of the Taylor-Lagrange formula

$$
\begin{equation*}
f(x)=f\left(x_{0}+\delta x\right)=f\left(x_{0}\right)+\delta x f^{\prime}\left(x_{0}\right)+\frac{1}{2} \delta x^{2} f^{\prime \prime}(\xi), x_{0}<\xi<x_{0}+\xi x \tag{76}
\end{equation*}
$$

and take $\mathrm{f}\left(\mathrm{x}_{1}=\mathrm{x}_{0}+\delta \mathrm{x}\right)=0, \xi=\mathrm{x}_{0}$ to obtain the iterative method

$$
\begin{equation*}
x_{1}=x_{0}+\delta x, 0=f\left(x_{0}\right)+\delta x f^{\prime}\left(x_{0}\right)+\frac{1}{2} \delta x^{2} f^{\prime \prime}\left(x_{0}\right) \tag{77}
\end{equation*}
$$

We approximate the solution of the increment equation

$$
\begin{equation*}
f_{0}+\delta x f_{0}^{\prime}+\frac{1}{2} \delta x^{2} f_{0}^{\prime \prime}=0 \tag{78}
\end{equation*}
$$

or, for that matter, any such higher order algebraic equation, by the power series

$$
\begin{equation*}
\delta x=\left(P+Q f_{0}+R f_{0}^{2}+S f_{0}^{3}+T f_{0}^{4}+\ldots\right) f_{0} \tag{79}
\end{equation*}
$$

and have upon substitution and collection that

$$
\begin{equation*}
\left(1+P f_{0}^{\prime}\right)+\left(Q f_{0}^{\prime}+\frac{1}{2} P^{2} f_{0}^{\prime \prime}\right) f_{0}+\left(R f_{0}^{\prime}+P Q f_{0}^{\prime \prime}\right) f_{0}^{2}+\left(S f_{0}^{\prime}+\frac{1}{2} Q^{2} f_{0}^{\prime \prime}+P R f_{0}^{\prime \prime}\right) f_{0}^{3}+\ldots=0 \tag{80}
\end{equation*}
$$

from which we have that

$$
\begin{equation*}
P=-\frac{1}{f_{0}^{\prime}}, Q=-\frac{1}{2} P^{2} s_{0}, R=-P Q s_{0}, S=-\left(\frac{1}{2} Q^{2}+P R\right) s_{0}, T=-(Q R+P S) s_{0} \tag{81}
\end{equation*}
$$

where $\mathrm{s}_{0}=\mathrm{f}_{0} / \mathrm{f}_{0}$
The methods

$$
\begin{equation*}
x_{1}=x_{0}+P f_{0}+Q f_{0}^{2} \text { and } x_{2}=x_{0}+P f_{0}+Q f_{0}^{2}+R f_{0}^{3} \tag{82}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}=x_{0}-\left(1+\frac{1}{2} u_{0}\right) u_{0}, x_{2}=x_{0}-\left(1+\frac{1}{2} u_{0}+\frac{1}{2} u_{0}^{2}\right) u_{0}, u=\frac{f}{f^{\prime}}, s=\frac{f^{\prime \prime}}{f^{\prime}}, u=u s \tag{83}
\end{equation*}
$$

are both cubic

$$
\begin{equation*}
x_{1}-a=\frac{1}{6} \frac{3 f^{\prime \prime 2}-f^{\prime} f^{\prime \prime \prime}}{f^{\prime 2}}\left(x_{0}-a\right)^{3}+O\left(x_{0}-a\right)^{4}, x_{2}-a=-\frac{1}{3} \frac{f^{\prime \prime \prime}}{f^{\prime}}\left(x-a_{0}\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right), \tag{84}
\end{equation*}
$$

provided that $\mathrm{f}(\mathrm{a}) \neq 0$.
The method

$$
\begin{equation*}
x_{1}=x_{0}-\left(P+Q u_{0}\right) u_{0}, u_{0}=\frac{f_{0}}{f_{0}^{\prime}}, u_{0}=\frac{f_{0} f_{0}^{\prime \prime}}{f_{0}^{\prime 2}}, P=\frac{m(3-m)}{2}, Q=\frac{1}{2} m^{2} \tag{85}
\end{equation*}
$$

converges cubically as well to a root of any multiplicity $\mathrm{m} \geq 1$

$$
\begin{equation*}
x_{1}-a=\frac{(3+m) B^{2}-2 m A C}{2 A^{2} m^{2}}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right) \tag{86}
\end{equation*}
$$

where $A=g(a), B=g^{\prime}(a), C=g$ "(a) for $g(x)$ in eq. (29).

Still Higher Order Methods

Starting with

$$
\begin{equation*}
f(x)=f\left(x_{0}+\delta x\right)=f_{0}+\delta x f_{0}^{\prime}+\frac{1}{2} \delta x^{2} f_{0}^{\prime \prime}+\frac{1}{6} \delta x^{3} f^{\prime \prime \prime}(\xi), x_{0}<\xi<x_{0}+\delta x \tag{87}
\end{equation*}
$$

we obtain the iterative method

$$
\begin{equation*}
x_{1}=x_{0}+\delta x, f_{0}+\delta x f_{0}^{\prime}+\frac{1}{2} \delta x^{2} f_{0}^{\prime \prime}+\frac{1}{6} \delta x^{3} f_{0}^{\prime \prime \prime}=0 \tag{88}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta x=\left(P+Q f_{0}+R f_{0}^{2}+S f_{0}^{3}+\ldots\right) f_{0} \tag{89}
\end{equation*}
$$

with

$$
\begin{equation*}
P=-\frac{1}{f^{\prime}}, Q=\frac{1}{2} P^{3} f^{\prime \prime}, R=P^{2}\left(Q f^{\prime \prime}+\frac{1}{6} P^{2} f^{\prime \prime \prime}\right), S=P\left(\frac{1}{2} Q^{2} f^{\prime \prime}+P R f^{\prime \prime}+\frac{1}{2} P^{2} Q f^{\prime \prime \prime}\right) \tag{90}
\end{equation*}
$$

The methods

$$
\begin{equation*}
x_{1}=x_{0}+\left(P+Q f_{0}+R f_{0}^{2}\right) f_{0} \text { and } x_{2}=x_{0}+\left(P+Q f_{0}+R f_{0}^{2}+S f_{0}^{3}\right) f_{0} \tag{91}
\end{equation*}
$$

are both quartic
$x_{2}-a=\frac{1}{24} \frac{f^{\prime \prime \prime}}{f^{\prime}}\left(x_{0}-a\right)^{4}+O\left(\left(x_{0}-a\right)^{5}\right)$
provided that $\mathrm{f}(\mathrm{a}) \neq 0$.

Unknown Root Multiplicity

The two single-step methods

$$
\begin{equation*}
x_{1}=x_{0}-m \frac{f_{0}}{f_{0}^{\prime}}, x_{2}=x_{0}-\frac{f_{0}^{\prime}}{f_{0}^{\prime 2}-f_{0} f_{0}^{\prime \prime}} f_{0} \tag{93}
\end{equation*}
$$

converge contrarily to root a of any multiplicity m

$$
\begin{equation*}
x_{1}-a=\frac{1}{m} \frac{B}{A}\left(x_{0}-a\right)^{2}+O\left(\left(x_{0}-a\right)^{3}\right), x_{2}-a=-\frac{1}{m} \frac{B}{A}\left(x_{0}-a\right)^{2}+O\left(\left(x_{0}-a\right)^{3}\right) \tag{94}
\end{equation*}
$$

where $A=g(a), B=g^{\prime}(a)$ for $g(x)$ in eq. (29). Their average is a cubic method

$$
\begin{equation*}
x_{3}-a=\frac{B^{2}(m-1)-2 A C m}{2 A^{2} m^{2}}\left(x_{0}-a\right)^{3}+O\left(\left(x_{0}-a\right)^{4}\right), x_{3}=\frac{1}{2}\left(x_{1}+x_{2}\right) \tag{95}
\end{equation*}
$$

where $\mathrm{A}=\mathrm{g}(\mathrm{a}), \mathrm{B}=\mathrm{g}^{\prime}(\mathrm{a}), \mathrm{C}=\mathrm{g}^{\prime \prime}(\mathrm{a})$ for $\mathrm{g}(\mathrm{x})$ in eq. (29).

References

1. Householder AS (1970) The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill, New-York.
2. Traub JF (1977) Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York.
3. Petkovi'c MS, Petkovi'c LD, D`zuni'c J (2010) Accelerating generators of iterative methods for finding multiple roots of nonlinear equations. Computers and Mathematics with Applications 59: 2784-2793.
4. Sharma JR (2005) A composite third order Newton-Steffenson method for solving nonlinear equations. Appl Math Comput 169: 242-246.
5. Ostrowski A (1960) Solution of Equations and Systems of Equations, Academic Press, New York.
6. Petkovi'c M (2009) On optimal multipoint methods for solving nonlinear equations. Novi Sad J Math 39: 123-130.
7. Neta B (1979) A sixth-order family of methods for nonlinear equations. Intern J Computer Math section B 7: 157-161.
8. Khattri SK, Argyros IK (2010) How to develop fourth and seventh order iterative methods. Novi Sad J Math 40: 61-67.
9. Weihong B, Hongmin R, Qingbiao W (2009) Three-step iterative methods with eighthorder convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics 225: 105-112.
10. Fried I (2013) High-order iterative bracketing methods. Int J Numer Meth Engng 94: 708-714.
11. King RF (1973) A family of fourth-order methods for nonlinear equations. SIAM Journal of Numerical Analysis 10: 876-879.
12. Osada N (1994) An optimal multiple root-finding method of order three," J Comput Appl Math 51: 131-133.
13. Changbum C, Hwa JB, Beny N (2009) New families of nonlinear third-order solvers for finding multiple roots. Computers Mathematics with Applications 57: 1574-1582.

[^0]: *Corresponding author: Isaac Fried, Department of Mathematics, Boston University, Boston, MA 02215, USA, Tel: 1 617-353-2000; E-mail: if@math.bu.edu

 Received March 29, 2014; Accepted May 09, 2014; Published June 16, 2014
 Citation: Fried I (2014) The Systematic Formation of High-Order Iterative Methods. J Appl Computat Math 3: 165 doi:10.4172/2168-9679.1000165
 Copyright: © 2014 Fried I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

