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Abstract

Fixed point iteration and the Taylor-Lagrange formula are used to derive, some new, efficient, high-order, up
to octic, methods to iteratively locate the root, simple or multiple, of a nonlinear equation. These methods are then
systematically modified to account for root multiplicities greater than one. Also derived, are super-quadratic methods
that converge contrarily, and super-linear and super-cubic methods that converge alteratingly, enabling us, not only
to approach the root, but also to actually bound and bracket it.
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Fixed Point Iteration

Consider the paradigmatic fixed point iteration
x, =F(x,) )

to locate fixed point a, F(a)=a of contracting function F(x). We write
x,—a=F(x) a and have by power series expansion that

implying that if 0<|F(x)|<l near x=a, namely, if F(x) is indeed
contracting, then the fixed point iteration converges linearly, and if
F’(a)=0, then the fixed point iteration converges quadratically, and so
on.

Suppose now that we are seeking root a, f(a)=0, f'(a) # 0, of function
f(x). To secure a quadratic iterative method we rewrite f(x)=0 as the
equivalent fixed point problem

x=F(x), F(x) = x+w(x) f (x) 3)

for weight function w(x),w(a) # 0, which we seek to fix to our advantage.
For a quadratic method we need w(x) to be such that

F'x)=1+w(x)f(x)+w(x)f'(x)=0 4

for x near a. Since f (a)=0, we choose to ignore w’(x) f(x) in the above
equation, to have w(x)=-1/f(x), and with it, Newton’s method

Xy = X~y ty =%,fo - f(x) )
0

which is actually quadratic

1f" 2 3
x—a=——(x,—a) +o((x,—a
1 2 7 (x,—a) ((xp—a)’) (6)
where £=f(a) # 0, f’=f"(a) < o0, and where x_ is the iterative input and
x, the iterative output.
From the two zero conditions
F'(x) =1+ f(x)w(x) + f()w/(x) =0, F"(x) = f(x)w(x) + 2 ()w'(x)+ f()w'(x) =0 (7)

we obtain, after ignoring f(x) w”(x) in the second of equations (7), the
system of equations

e ]

which we solve for w(x) as

det{_1 f}
B 0 2f

w=s——F—"——= 9)
det {f.” f,l
S"2f
to have Halley’s method
o {;1 gf} 2 I :
X =X+ 7 . Jo=x,- /2'0 S So=%— uo,u(,:% (10)
det |:f0 fn} zfu _fofu lfl(fo"/fo’)uo fo
o 20 2
which is, indeed, cubic
1 3 "2 _ 2 wm
o= 22 oy +olx,—)") a1

X 12 17
provided that f(a)=0, but f'(a) # 0

Requesting that F(a)=a, F'(a)=0, F’(a)=0, F”’(a)=0, we similarly
obtain the method

-1 £ 0

det| 0 2] 1f,
0 3/ 3/
fo fo O

det| £ 2f f,
VY

X, =X, +

6foa _3f0f0” f (12)

f6:xo_ B ren 2
6fg =S /ol + 1o Sy

which is quartic

x,—a= 214 374 '];igflu'flzf”” (x,—a)* +o((x,—a)’) (13)

provided that £=f(a) = 0.

Higher order single-point methods are readily obtained by
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requesting higher order derivatives of F(x)=x+w(x) f(x) to to zero at
x=a, f (a)=0 [1].

A Recursive Determination of the Higher Order
Iterative Function

There are various ways to recursively generate a new higher order
iterative function F(x) of eq. (1) from a known lower order one. Traub

[2] has suggested such a rational recursive formula. If, for example,
F(x)=F,(x) is such that

Fy(a)=a, F)(a)=0, (14)
then
_nE () —xF(x)
F(x)= = Fi0) ,n=2 (15)
is such that
F\(a)= a, F(a) = 0, F{a) = 0 (16)

with which the iterative method x,=F,(x,) to locate fixed point a, F(a)=a
becomes cubic

1
X —a :_EFM(Q)(XO —-a)’ +O((x, —a)*). (17)
Instead of rational formula (15) we suggest the product formula
F\(0) = F, +~ F/(F, ), n=2 (18)
n

with which we still have third order convergence

l n "

X, —a :E(3F (a)’ = F"(a))(x,—a)’ +O((x,—a)"). (19)
For example, for Newton’s method F,(x)=x-f(x)/f(x). Using

formula (18) we obtain by it the method

Jo S
= Fy(xy), F5(xy) = x, —ut, 24]0,0, : Uy = ﬁ (20)
which is, indeed, cubic
2 _ ot m

=lu(xo —a)’ +0((x, —a)h) (21)

X —a 6 17
provided that £=f(a) #0.

Iterative method (20) is also obtained from Halley’s method of eq.
(10) using the approximation

(1—%% u,)” _1+;j:° (22)

Further, if F,(x) is such that

Fy(a)=a,F{(a)=0,F/(a) =0 (23)
then

Fra(0)= Fy 4~ E{F, =), n=3 @
is such that "

Fy(a)=a, F{(a)=0,F(a)=0,Fa)=0 (25)
and the iterative method x,=F,(x,) to locate fixed point a is quartic

X —a =71—2F<4)(x0 —-a)* +0((x, —a)*). (26)

It is well known that the modified Newton’s method

=F,(x), Fy(x) =x—m-~<-—= S (27)
S(x)

converges quadratically to a root of any multiplicity m > 1. From
equation (24) we derive the third order method

xl=F3(x0),F3(x)=x—%m(3—m)u—mz%uz,u:‘;’((i)) (28)

Indeed, assuming that
Sx)=(x-a)"g(x), ga)#0 (29)
we obtain for the method in eq. (28)

2_
X —a= (3+m)B mAC(xO

ey —a)’ +O0((x, —a)*) (30)

where A=g(a), B=g'(a), C=g”(a), and m is the multiplicity index of
repeating root a [3].

From eq. (29) we have

@) _1 2 g@ 3
(f'(x)] ol )(x a)+O0((x—a)*) (31)

by which we may, knowing an x close to a, estimate m.

A One-Sided Third-Order Two-Step, or Chord, Method

Having computed x =x;
point method

- f /f, we return to correct it as the mid-

UM (.5 N L E P
f(EXO +Ex1j S &= 1) Jy
which is now cubic, or third order
"2 ’ m
:Lu(xo—a)3 +O((x0—a)4). (33)

X, —
2 24 fr2
See also Traub [2] page 164 eq. (8-12).

The modified method
4f
X, =X, — # (34)
fo +3f" (x, - 7“0)
is cubic
X, — (f—) (x,— a) +0((x,— a) ) (35)

4

and one sided. At least asymptotically, if x ~a > 0, then also x,—a > 0,
and ifx ~a < 0, then alsox, —a <0

Using the approximation

1 _S)=f(x-u)

Sf'(x— u) B — (36)
equation (32) becomes the two-step, or chord, method
X, =X, —Luo or x,=x,—(1+ru, or x,=x,—(l+r+1’)u,, r :f—i, (37)
- 1-r /o

where u=f/f ,x=x - u, f=f(x). All three methods of eq. (37) are
cubic

_ 71 ﬂ 2 _ 3 _ :l Lw 2 _ 3 _ :l ﬂ 2 _ 3 _ 3
X, a74(f,)(x0 a)’, x,—a 2(/_,) (X,—a)’, x,—a 4(/.,)(’(0 a)’ +O0((x, —a)’). (38)

See Traub [2-4].

Convergence of this method is also one sided.
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Construction of High-Order Iterationsby Undetermined
Coefficients

Halley’s method, or for that matter any other higher order method,
can be constructed by writing 8x, x,=x, + 0x, as a power series of
u,=f /f , or even of merely f =f(x ). For example, we write the quadratic

X, =%, + Pfy + Of (39)

and then sequentially fix the undetermined coefficients P and Q for
highest attainable order of convergence.

Thus, at first we have from eq. (39) that

x —a=(1+Pf")(x,—a)+O((x, —a)*) (40)
and we set P=—1/f . With this P we have next that
X, —a= (2f—f,+f'2Q)(xO —a)’ +O0((x, —a)’) (41)
and we set
1 1)
P:_i,a Q:_ Oy (42)
Jo 217

with which the polynomial method of eq. (20) is recovered.

Doing the same to the rational method

P+0f,

X =X, +
R+5f,

S (43)
we determine by power series expansion that cubic convergence is
assured for P=—1/100,

Q=0,R=1, S=—f"/ (2f? » )» with which the classical Halley’s method
of eq. (10) is recovered.

Quartic and Quintic Multistep Methods

The rational two-step method (a generalization of the method in
eq. (37)) of Ostrowski [5] appendix G,

_ _]—r . 2 3 _ _ =i
X=X =Tt =X, (A+r+2r 4 + Duy, fi=f(x,—u,), r 7 (44)
is quartic
" uZ_ ’ "
vy—a= L OS2 (o _ay v O((x,—a)). (45)

24 fr
Traub [2,3,6-8]

See also page 184 eq. (8-78).

The polynomial in r method

x, = x,-(L+7+2r)uy, u, :%, (46)
0
is also quartic
X,-a= e j{G (51" -21" f")(x, -a)' + O((x, -a)’). (47)

The multistep method

1 1
X, =Xy ——1U,, x3:x2——£,r=£ (48)
1-r 1-2r f fo
is quintic
n2 "2 ptoem
X, —a= LAY My i) (x, —a)’ + O((x, —a)®). (49)

24 Fa

Sextic and Octic Multistep Methods

The multistep method
1-r f, h

r==->-, uozﬁ

1+3r £ f, 1!

xzzxo—(1+r+2r2)u0, X, =X, (50)

is sextic
L 1" 1542 (1 f™) 6 7
X,—a=—o : x,—a) +0((x,—a)"). (51
3 ™ I8 (xp—a)" +O0((x, —a)"). (51)
The method
=L 23 s 2 0, =D = L2 sy
g Jo A
is octic
x,—a= ”152 DA GlL it fm)(z;,{n T b (x,-2)" +0((x,~2)"). (53)
[6,9]

Contrarily converging super-quadratic methods

We write y y
X, =X, —(L+P)ug, uy ==r,r==1, fi= f(x),% =X~ (54)
Jo Jo
for undetermined coefhicient P, and have
] "

X, = :5';, (1- P)(x,—2)* +O((x,—2)*). (55)

We request that

S’ JARY

—(1=-P)=2k(—) 56

G 7 (56)
for parameter k, by which the iterative method in eq. (54) turns into

x, = x, — (1+7)u, +4kr’ (57)
for any constant k, and

X,—a= k(f—,)2 (x, —a)’ +O((x, —a)"). (58)

This super-quadratic method converges from above if k>0, and
from below if k<0

The interest in the method

Xy =X~ uo,xl=x0—u0,fl'=f(x1),r:L},u0:L0, (59)
-r fo fO
is that it ultimately converges oppositely to Newton’s method,
1 o
,—a= 75%@0 ~a) +0((x, ~a)") (60)

as is seen by comparing eq. (60) with eq. (6).

The average of Newton’s method and the method of eq. (59) is
cubic,

m

%(xl+x2)—a=— (xo—a)3+0((x0—a)4). (61)

6 f'
Alternaingly Converging Super-Linear and Super-
Cubic Methods

We start by modifying Newton’s method

Jo
= x,—(1+ )22 k>0
x, =x,—(1+ )f0 (62)
to have
x,-a = -k(x, -a)+O((x, -a)’) (63)

indicating that, invariably, the method converges, atleast asymptotically,
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alternatingly. For k > 0, if x,—a>0, then x, —a<0o, and vice versa. For
a higher-order alternating method we rewrite the originally quartic
method of eq. (46) as

5= = (e Oy =28 =L o) (o)
Lk
for the undetermined coefficient Q, and have that
14 ]
- —k(%)z (8, -)' + 05y~ @) ), k=1 (@-2). (&9

This super cubic method converges alternatingly if parameter k > 0.

Correction for Multiple Roots by Undetermined
Coefficients

We rewrite Newton’s method as

X, =x—Pu, uy=— (66)

!

for undetermined coefficient P, and have that for a root of multiplicity
mz21

x,—a=(1 —£)(x0 —a)+12§(x0 —a) + O((x, —a)’) (67)
m m- A

where A=g(a), B=g’(a) for g(x) in eq. (29). Quadratic convergence is
restored, as is well known, with P=m.

With P=m(1-k), k<0 the modified Newton’s method of eq. (66)
becomes superliner and ultimately of alternating convergence [10].

Next, we rewrite the method in eq. (37) as

P S
_ - —
Uy, r==-, i =f(x), x, = x, —u, (68)
Q-r Jo
and seek to fix correction coefficients P and Q so that convergence
remains cubic even in the event that root a is of multiplicity m > 1. By
power series expansion we determine that

x2=x0—

P=0= (’” Yt s P=0=1if m=1 (69)
upholds cubic convergence
—-2(m-1)AC
Xy,—a= #(% - a)3 +O0((x, - a)4) (70)
where A=g(a), B=g’(a),C=g”(a) for g(x) in eq. (29)
The method
m+1
xz:—(P+Qr)u0,P:m(2—m),Q:m7nH,m>l (71)
(m—1)
is also cubic
2 p— —
x,—a=FDB 2Am=DAC s o((x - a)) (72)
2m~A

where A=g(a), B=g’(a), C=g”(a) for g(x) in eq. (29) [11-13].
Correction of Halley’s Method for Multiple Roots

We rewrite Halley’s method of eq. (10) for the undetermined
coefficient P and Q as
B
Of" = 1l
and determine by power series expansion that for

1
P=2,0=1+— (74)
m

X =Xy —

So (73)

convergence remains cubic for a root of any multiplicity m > 1

(m+1)B* —2mAC
2m’ A*
where A=g(a), B=g’(a),C=g”(a) for g(x) in eq. (29) [11,12].

(x— a)3 +O0((x, — a)4) (75)

x—a=

Use of the Taylor-Lagrange formula

We write the second order version of the Taylor-Lagrange formula
S0 =10 +63) = £ () +5%(x,) %5%/‘"(5), % <& <x+&x (76)

and take f(x,=x, + 8x)=0, &=x to obtain the iterative method

! 1 "
X, =x,+0x,0=f(x,))+0xf (x0)+55x2f () (77)
We approximate the solution of the increment equation
£ +5xf0'+%5x2ﬁj”=0 (78)

or, for that matter, any such higher order algebraic equation, by the
power series

Sx=(P+Of, +Rf; +Sf, +Tf) +..) f, (79)

and have upon substitution and collection that

(14 P+ QU+ 3 P 1)+ R+ PORDSS (S + 30"+ PRI +..=0 (80)

from which we have that

P——%, =—%PZVO,R:—PQSO,S:—(%Q2+PR)sO,T:—(QR+PS)sO (81)
0
where s =f /f

The methods

X =X, + Pfy +Of; and x, = x, + Pfy + Of; + Rf; (82)
or

X, =X, —(lJr%uO)uD,xz =X, —(1+%u0 +%u§)uo,u :%,s: ';, su=us (83)

are both cubic

X —a= IM(x —a)y +0(x,—a),x,—a=

R ~a,)' +0((x, ~a)"), (84)
provided that f'(a) =0
The method
5= 3~ (P4 Qup gy ty =20y = LoT0 ”’(3 ™) Q-l * (85)
5 5

converges cubically as well to a root of any multiplicity mz21

3+m)B*> —2mAC
hTes 24°m? (%
where A=g(a), B=g’(a),C=g”(a) for g(x) in eq. (29).
Still Higher Order Methods
Starting with

f(x)=f(x,+0x)=f, + 5xf(']'+%5x2f(')"+ ééxjf'"(cf), X, <E<x,+0x (87)

—a) +0((x, —a)*) (86)

we obtain the iterative method

X, :x0+5x,f0+é'xf0'+%6x fo+— 5 =0 (88)
where

Sx=(P+0Of, + Ry + S, +..) 1, (89)
with
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1 1
P=——\,0=—
e © 2

The methods
x, = x, +(P+0Of, + Rf) f, and x, = x, + (P+Of, + Rfy +S£)) f, (91)

are both quartic

P R=PQ" 4P f").S = PCO' "+ PR+ PO ™). (90)

X,—a= a%(xo —a)4 +O0((x, —a)s)

provided that f'(a) # 0.
Unknown Root Multiplicity
The two single-step methods
o fo
X =X -m=L X, =X _—Ufo

7 I = RS

converge contrarily to root a of any multiplicity m

(93)

xl7a=i§(x07a)z+O((x070)3),x27azfié(xofa)2+0((xﬂfa)3) (94)
m A m A

where A=g(a), B=g’(a) for g(x) in eq. (29). Their average is a cubic
method

_B*(m—-1)-24Cm
a 24°m?
where A=g(a), B=g’(a),C=g”(a) for g(x) in eq. (29).

3

(5= ) +0((%,~)").x, = 3 (5 + ) (99)
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