The Termination of Physical Constants in Proton Mass

Paul TE Cusack*
Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

Abstract
In this brief paper, I reduce the irrational physical constants in terms of energy. I show mathematically, how the constants terminate in the mass of a proton. The energy balance terminates the irrational numbers; especially important is the golden mean.

Keywords: Physical constants; Dampened cosine; Golden mean; Period; Super force

Irrational Physical Constants
\[\Pi \text{ [Irr. Numbers]} = \sqrt[3]{3} \cdot \sqrt{2} \cdot e \cdot \pi \cdot c \cdot F \]
\[= 1.67228 + 1/0.222 - 1672621898 \text{ kg} \]
Mass of a proton
Where \(c = 2.997929\) and \(F = 8/3 = \sin 60^\circ = \text{Super force} \)
\[1.672 \cdot G = 1.672 - 6.67 = 1.115 = 1/c^2 \]
\[1/c^2 = E/c^2 = M \text{ (Einstein's Equation)} \]
So,
\[M/G = \Pi \text{ [Irr. Numbers]} \]
Continuing:
\[\Pi \text{ [Irr. Numbers]} / F = 6.27106 - 2\pi \]
\[1/(2\pi) = 1.595 - 0.1585 = 1 - \text{sin} 1 = \text{Moment} = F \cdot d = \text{Work} \]
Work \(-F = 0.1585 - (8/3) = 0.4227 - \text{cuz} (\pi - e) = R_m \text{ (Resistance to Mass Formation)} \)

The Golden Mean and the Dampened Cosine
\[1/0.616161... = 1.623 \]
\[1.623 - 1.618 = 0.0054 = 1/201.9 = 1/Y \]
Where \(Y = e \cdot \cos \theta = e^{-1} \cos 1 = 0.1988 - 0.2 = dM/dt \)

Given
\[M_p = 938.27208 \]
\[R_m = 0.4227 \]
\[dM/dt = 0.1988 \]
\[G = \pi / (\ln 1.618) = 6.52 \]
\[G + \text{Nuclear} = 6.67 \]
Period \(T = 251.2 \)
\[M/G \cdot \sin 60^\circ = E \]
\[= R_m \cdot M_p / 6.52 + dM/dt / 6.52 + \text{Nuclear} - \text{Period} T = 1/t = E \]
\[= 6.0829 + 0.03049 + 0.0062533 - (1/2512) \]
\[= 616 \]
\[= 1/0.16234 \]
\[1.618 - 1.6234 = 0.0054 \]
\[1.672621898 - 0.0054 = 1.618 = t \]
\[t - (1/M_p) = \infty \]
\[1.618 - 1.624 = 1/0.196 = 1/\infty = 0 = \text{Energy Balance} \]

Irrational Numbers terminate at 196. And
Super force = \(\sin 60^\circ = 0.866 \)
\[0.616 - 0.866 = 0.250 = T = 1/t = E \]

Conclusion
The Physical Constants terminate in the mass of a proton which is shown using Energy and time formula [1,2].

References