
Research Article Open Access

Volume 1 • Issue 4 • 1000e108J Hypertens
ISSN: 2167-1095 JHOA an open access journal

Open AccessEditorial

Dial et al., J Hypertens 2012, 1:4 
DOI: 10.4172/2167-1095.1000e108

*Corresponding author: Joseph I. Shapiro, Dean, Joan C Edwards College of 
Medicine, 1600 Medical Center Drive, Suite 3408, Huntington, WV, USA, Tel: 
25701-3655; E-mail: shapiroj@marshall.edu

Received  November 29, 2012; Accepted December 05, 2012; Published 
December 13, 2012

Citation: Dial L, Xie J, Shapiro JI (2012) The Tradeoff between Natriuresis and 
Cardiac and Renal Fibrosis. J Hypertens 1:e108. doi:10.4172/2167-1095.1000e108

Copyright: © 2012 Dial L, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.
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Historical Perspective
In 1961, de Wardener et al. introduced a novel concept in renal 

hemodynamics when he discovered that kidneys were able to increase 
sodium excretion after saline infusion despite controlling glomerular 
filtration rate, also considered “factor one” and aldosterone, which was 
considered “factor two” [1]. Thus, it was proposed that a “Third Factor” 
existed and that this material was natriuretic in a manner which did not 
involve GFR or mineralocorticoids. This “Third Factor” was studied by 
a number of investigators including Schrier et al. [2,3], Kramer and 
Gonick [4], Bricker et al. [5], and Gruber et al. [6]; the collective wisdom 
was that this “third factor” was an endogenous digitalis-like substance 
or Cardiotonic Steroid (CTS) [2-6]. We now know that endogenous 
CTS include cardenolides such as ouabain and bufadienolides such as 
marinobufagenin [7-10]. Ouabain and marinobufagenin have been 
detected in human plasma and urine [7,9,11]. 

In addition to their role in renal physiology, scientists were also 
interested in the cardiac effects of these CTS. In 1963, Repke was 
suggested that the Na/K-ATPase was the receptor for digitalis [12]. 
Since then, extensive studies from many laboratories revealed that 
CTS were specific ligands for the Na/K-ATPase, and in fact, produced 
their physiological effects through binding to the plasmalemmal 
Na/K-ATPase [13]. For many years, it was assumed that this binding 
produced inhibition of the enzymatic and ion pumping aspect of the 
Na/K-ATPase, but more recent data which we will discuss below has 
cast some doubt upon this assumption. 

The Na/K-ATPase is a member of the P-type ATPase family and is 
responsible for the active transport of Na and K ions across animal cell 
membranes with energy supplied via the hydrolysis of ATP [14]. The 
structure and ion pumping function have been extensively studied. The 
currently accepted (Post-Albers) model proposes that there is are non-
covalently linked alpha and beta subunits, of which multiple isoforms 
in various combinations exist [15] which undergo conformational 
changes and reversible phosphorylation depending on whether sodium 
is being pumped out of the cell or potassium is being pumped in. Four 
alpha isoforms and three beta isoforms have been identified with their 
expression having tissue specificities, as well as differences in sensitivity 
to CTS. The alpha-1 isoform which demonstrates considerable species 
differences in sensitivity to CTS also appears to be the main functional 
receptor for CTS in the kidney [16-20].

Classically, the mechanism of CTS-induced natriuresis was 
understood as follows: volume expansion or a salt-heavy diet leads to 
an increase in circulating CTS, which in turn results in the inhibition 
of the Na/K-ATPase in the nephron, specifically, its ion pumping 

ability. Consequently, cytosolic Na+ begins to rise, and eventually this 
disruption in the Na+ gradient across the cell membrane decreases Na 
reabsorption in the Renal Proximal Tubules (RPT) leading to increased 
sodium excretion [21]. Systemically, increased levels of CTS also 
inhibit the Na/K-ATPase in vasculature, thereby altering intracellular 
Na gradients in vascular smooth muscle cells. This indirectly leads to 
the inhibition of the Na/Ca exchanger causing intracellular calcium in 
these smooth muscle cells to rise as well [21-23]. This pathway has been 
implicated in the pathogenesis of hypertension [21]. 

More recently, Xie et al. [24] suggested in the late 1990s that the 
Na/K-ATPase had an additional signaling function which was related 
to its function as a scaffolding protein. These workers proposed that 
CTS also bound to a non-pumping pool of Na/K-ATPase residing in 
caveolae [24]. This subset of Na/K-ATPase bound the protein Src, a 
non-receptor tyrosine kinase, and under basal circumstances kept it 
in an inactive state. With the conformational change induced by CTS 
binding, Src was activated and a signal cascade involving the Epithelial 
Growth Factor Receptor (EGFR) and downstream targets such as Ras/
Raf/MAPK, PI3 kinase/Akt, phospholipase C/PKC, and the generation 
of ROS was produced [25-32]. Work by our laboratories demonstrated 
that this signal cascade was directly linked to Na/K-ATPase and NHE3 
endocytosis in renal proximal tubule cells and natriuresis in response 
to a sodium load [33-37]. Support for this theory was provided by other 
groups as well. Lingrel et al. first established that ouabain binding to 
the Na/K-ATPase is crucial in the natriuretic response of the kidney. 
His laboratory developed ouabain-sensitive mice by incorporating 
a mutation in the ouabain receptor domain of the mouse alpha-1 
Na/K-ATPase and noted that saline infusion increased the natriuretic 
response in ouabain-sensitive in comparison to ouabain-resistant 
mice [38]. More recently, Nascimento showed that bufalin, another 
derivative of the bufadienolides required Na/K-ATPase signaling in 
order to produce natriuretic effects in isolated rat kidneys [39]. More 
recently, our group demonstrated that high-salt diets in Dahl salt-
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resistant rats (R) induced the endocytosis of RPT Na/K-ATPase and 
NHE3 transporters concurrent with increased Src activity. In contrast, 
Na/K-ATPase signaling was markedly attenuated in Dahl salt-sensitive 
rats (S) [40].

Natriuresis vs. Fibrosis
Using an experimental renal failure model induced by segmental 

infarction of one kidney and removal of the contralateral kidney (5/6th 
nephrectomy), we noted that the development of cardiac hypertrophy 
and fibrosis in both rats and mice appeared to involve an increase in 
systemic oxidative stress. Interestingly, this oxidant stress appears 
to depend on increased levels of circulating MBG [41-44]. In other 
words, the oxidant stress associated with renal failure may be due to 
the increased signaling of CTS through the Na/K-ATPase, a concept 
different from prevailing opinions which implicated inflammation as 
the central cause of this oxidant stress [43-45]. 

These physiological and morphological findings in the animal 
models corresponded to evidence of signaling through the Na/K-ATPase 
as we detected activation of both Src and MAPK phosphorylation in 
the fibrotic cardiac tissue. These results were similarly demonstrated in 
rats subjected to MBG infusion. However, after adrenalectomy to lower 
circulating levels of MBG and either active immunization against an 
MBG-albumin conjugate or passive immunization using a monoclonal 
developed against MBG or the ovine antibody fragment, Digibind, 
cardiac fibrosis was significantly reduced in both partial nephrectomy 
and MBG-infusion experimental groups [42,43,46-48]. 

Work from other groups also supports this concept. Wansapura et 
al. [49] subjected genetically altered ouabain-sensitive mice (originally 
developed by Lingrel) to aortic banding in order to simulate a pressure 
overload model. After four weeks, the ouabain-sensitive group was 
noted to have developed substantially greater cardiac hypertrophy and 
fibrosis compared to ouabain-resistant (wild-type) mice. Furthermore, 
the administration of Digibind to the ouabain-sensitive mice 
diminished these cardiac changes [49]. Using cultures of rat cardiac 
and renal fibroblasts as well as human dermal fibroblasts, we found 
that CTS were able to directly increase collagen production and proline 
incorporation [42,50,51]. By inducing a translocation of PKC to the 
nucleus, MBG appears to cause the subsequent phosphorylation and 
degradation of Friend leukemia integration-1 (Fli-1), which Watson 
et al. [52] have demonstrated is a negative regulator of collagen 
synthesis in dermal fibroblasts [50,52]. We also observed that MBG 
infusion stimulates the expression and nuclear translocation of snail, 
a transcription factor involved in epithelial-mesenchymal transition, 
which is implicated in renal fibrosis [53].

In addition to the above, we also examined the effects of 
spironolactone, known to be a competitive antagonist of CTS binding 
to the Na/K-ATPase, as well as its major metabolite, canrenone on the 
development and progression of this model of uremic cardiomyopathy. 
We found that spironolactone significantly attenuated cardiac fibrosis 
in the renal failure models, and both spironolactone and canrenone 
reduced collagen production in cardiac fibroblasts [54]. It was 
further demonstrated that spironolactone blocked MBG-induced 
Na/K-ATPase signaling both in vivo as well as CTS binding to the 
plasmalemmal Na/K-ATPase [54].

Conclusions
Endogenous circulating CTS are up regulated in the response to 

volume expansion. The binding of CTS to their receptor, the Na/K-
ATPase, leads to decreased proximal tubular sodium reabsorption and 

increased natriuresis. Our data suggest that this is likely due to the 
recently discovered scaffolding and signaling functions of the Na/K-
ATPase. Unfortunately, this same process in fibroblasts is profibrotic, 
and this leads to a trade-off between sodium homeostasis in the short 
term and progressive cardiac and renal fibrosis in the long term. We 
further speculate that this may explain the long term deleterious effects 
of a high salt diet on cardiovascular health.
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