The T-Shaped Fractures of the Acetabulum

Omar F Martin*, Patricia ZA, Miguel Ángel MF, Aurelio VC, Jose Antonio VG and Maria Ángeles DG

1Department of Orthopedic Surgery and Traumatology, Hospital de Avila, Avila, Spain
2Hospital Severo Ochoa, Leganes-Spain
3University of Valladolid-Spain
4Hospital de Ávila, Sacyl-Spain
5Hospital Marques de Valdecilla- Spain

Introduction

The T-shaped pelvic fracture represents from 3%-12% of all acetabulum fractures. It is defined as a transverse acetabulum fracture in combination with a vertical fracture that divides the posterior column from the anterior column (Figure 1). Although the T-type fracture affects both columns, it differs by definition from a fracture of both columns in that part of the acetabulum articular surface still remains stably attached to the iliac pelvic ring.

The management of acetabular fractures has improved greatly over the last 30 years [2]. Non-operative management was preferred by most orthopaedic surgeons until Judet et al. published their paper in 1964 which led to a better understanding of the different types of acetabular fractures [3].

A satisfactory result of the treatment of acetabular fractures requires anatomic reduction, stable internal fixation and early mobilization. The treatment of choice for acetabular fractures with an incongruity greater than 3 mm is open reduction and internal fixation [4].

Letournel reported good outcomes in 75% of operated fractures of the acetabulum observed for 2-21 years. This figure increased to nearly 90% of good or excellent results when the initial reduction was anatomic and maintained, but was only 55% when reduction was imperfect. Procedures using plates, lag screws or both have been advocated for fixation of anterior and posterior column fractures. Optimal position and amount of internal fixation and the required surgical approach or approaches for both column fractures also are debated [5-8].

Despite the requirement of regaining and maintaining anatomic reduction is essential for the success of the procedure, few studies have been reported to evaluate techniques of fixation. No biomechanical studies in vivo have been carried out about the T-type acetabular fracture. In 1995 reports over cadaveric models the results in relation to stability of diverse types of internal fixation needing anterior, posterior or combined surgical approaches for the T-shaped acetabular fracture [4]. The evaluation regarding with did not show differences statistically significant. The anterior column plate provided the highest degree of added stability for the anterior column fracture line, although differences were not statistically significant. Same was found for the posterior column fracture line with the posterior column plate. Each plate or combination stabilized the inferior fracture line similarly. This study attempted to evaluate an unstable T-type acetabular fracture in a physiologic manner. The authors performed a load of approximately 10% of bodyweight. This is the load that might be anticipated during rehabilitation in the hip of a patient after open fixation of an acetabulum fracture. The displacements evaluated did not differ between the three types of fixation at each of the 3 fracture sites. These results suggest that either an anterior or posterior plate provides equivalent stability compared with a combination of anterior and posterior plates. Perhaps the fracture line that includes more of the articular surface or most displaced should influence what type of plate is used, if anterior or posterior. Therefore, the approach the surgeon is most familiar with should influence the decision to use and anterior or posterior plate.

We have to take into account that operative procedures carry risks of infection, deep vein thrombosis, nerve palsy, and heterotopic ossification among others. Specific problems associated with internal fixation include intraarticular penetration of screws or loss of fixation, which may lead to the rapid development of osteoarthritis or chondrolysis [9,10].

figure 1: T-Type fracture of the acetabulum.

Treatments

Accuracy of the fracture reduction may be considered as the main problem of reduction of a displaced T-shaped fracture of the acetabulum. To show that approaching the pubo-acetabular fragment to reconstruct the pelvic brim is important for the reduction thses kind of fractures

Copyright: © 2016 Martin OF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding author: Omar F Martin, Department of Orthopedic Surgery and Traumatology, Hospital de Avila, Avila, Spain, Tel: +34630081151; E-mail: ofmartin@msn.com

Received March 18, 2016; Accepted April 29, 2016; Published May 03, 2016

Citation: Martin OF, Patricia ZA, Miguel Ángel MF, Aurelio VC, Jose Antonio VG, et al. (2016) The T-Shaped Fractures of the Acetabulum. J Trauma Treat 5: 303. doi:10.4172/2167-1222.1000303
for fractures that involve the quadrilateral surface with or without commination and medial dislocation of the femoral head. General agreement exists for the use of the modified Stoppa approach for all fractures that can be managed with an ilioinguinal approach [16,17]. In 2010 the comparative results of the operative treatment of the T-shaped fractures of the Acetabulum via Stoppa approach or via surgical hip dislocation (Table 1). The authors considered the Stoppa approach with larger displacement of the anterior column and the surgical hip dislocation approach with larger displacement of the posterior column. A combined approach might be necessary with difficult reduction. Contraindications were fractures of more than 15 days, abdominal problems and suprapubic catheters [1].

The advantages and disadvantages described for each type of approach were:

Surgical hip dislocation approach:

Advantages
- Intermuscular approach low invasive.
- Direct view of articular surface.
- Approach of the superior aspect of the acetabulum.
- Approach of the entire posterior column.
- Additional approach of the anterior column.
- Additional approach of the anterior wall.
- Possibility of treatment of injuries of the femoral head.
- Possibility of primary total hip replacement by the same approach.
- Direct visual exclusion of an intraarticular torsion.

Disadvantages
- It is only possible to achieve a partial reduction of the anterior column.
- A greater trochanter osteotomy is needed.
- A minimum risk of avascular femoral head necrosis exists.

Stoppa approach

Advantages
- Earlier rehabilitation.
- Surgical requirement of this approach is relatively easy and secure.
- Less invasive than the classic ilioinguinal approach or than the extended iliofemoral approach.
- Easy closing of the wound.
- Very reduced tendency to develop heteropic ossifications.
- There is no risk of damaging the sciatic nerve or the lateral femoral cutaneous nerve.
- The risk of damaging the great iliac vessels is low.
- Change to a classic ilioinguinal approach.
- Low bleeding.

Disadvantages
- The internal fixation may be difficult.
- It is only possible to achieve a limited reduction of the posterior column.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Patients</th>
<th>Follow-up period</th>
<th>Type of Fracture</th>
<th>Treatment</th>
<th>Surgical approach</th>
<th>Methods of evaluation</th>
<th>Results</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. [13]</td>
<td>2015</td>
<td>3 patients</td>
<td>Not specified</td>
<td>T-type fractures</td>
<td>Plate and screws</td>
<td>Iliofemoral approach</td>
<td>Technical evaluation of new clamp Simple X-ray</td>
<td>Good reduction and stable fixation</td>
<td>None</td>
</tr>
<tr>
<td>Fan et al.</td>
<td>2015</td>
<td>3 pelvic model</td>
<td>Not specified</td>
<td>T-type fracture</td>
<td>Double column reconstruction plates, anterior column plate combined with posterior column screws, and anterior column plate combined with quadrilateral area screws (P+QS)</td>
<td>None</td>
<td>Biomechanical evaluation in experimental models</td>
<td>Effective functional outcomes. The third fixation system was the optimal method: anterior column plate combined with quadrilateral area screws</td>
<td>None</td>
</tr>
<tr>
<td>Bath et al.</td>
<td>2014</td>
<td>5 patients</td>
<td>2-5 years</td>
<td>T-type fracture</td>
<td>Plate and screws</td>
<td>Not specified</td>
<td>Simple X-ray evaluation and Merle functional score</td>
<td>3 fair and 2 poor results</td>
<td>Lateral subluxation. post-traumatic osteoarthritis 2 years after the initial accident.</td>
</tr>
<tr>
<td>Lao et al. [21]</td>
<td>2011</td>
<td>Case report</td>
<td>2 years.</td>
<td>Anterior hip subluxation following fixation of a T-shaped acetabular fracture</td>
<td>Ilioischial screw and an AO reconstruction plate in neutralization.</td>
<td>Extended iliopelvical approach</td>
<td>Simple X-ray evaluation and CT</td>
<td>Fracture union 7 months after the initial accident as well as absence of a joint congruence defect and heterotopic ossifications.</td>
<td>One delayed trochanteric union, one heterotopic ossification and one loss of reduction. There were no cases of avascular necrosis in two patients, a total hip arthroplasty was performed due to the development of secondary hip osteoarthritis.</td>
</tr>
<tr>
<td>Tannast et al. [1]</td>
<td>2010</td>
<td>17 patients</td>
<td>3.2 years</td>
<td>Displaced acetabular T-type fractures. 3 cases with central hip dislocation</td>
<td>Plate and screws.</td>
<td>Surgical hip dislocation: 10 patients. Stoppa approach: 2 patients Combined approach: 5 patients</td>
<td>Simple X-ray evaluation according to Matta’s criteria</td>
<td>Anatomic reduction was achieved in ten of the twelve patients (83%) without primary total hip arthroplasty.</td>
<td>Lateral subluxation. post-traumatic osteoarthritis 2 years after the initial accident.</td>
</tr>
<tr>
<td>Porter et al.</td>
<td>2008</td>
<td>323 patients, 20 of them with T-Type acetabular fractures</td>
<td>4-8 years</td>
<td>20 T-type displaced acetabular fractures</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Evaluation of the visceral organ injuries.</td>
<td>Vascular 10% -Upper Extremity fracture 15% -Spleen 15% -Spine fracture 30% -Retroperitoneal Hematoma 35% -Lung 30% -Liver 5% -Low extremity fracture 40% -Kidney 5% -Brain 5% -Bowel 5% -Bladder 5%</td>
<td>Evaluation of the visceral organ injuries.</td>
</tr>
<tr>
<td>Hirvensalo et al. [16]</td>
<td>2007</td>
<td>14 patients of a total of 164 patients with acetabular fractures</td>
<td>3.9 years</td>
<td>14 T-type acetabular fractures</td>
<td>Open reduction and internal fixation with plates and screws</td>
<td>Standard Anterior approach (most of the cases) / and posterior approach combined.</td>
<td>Harris Hip Scale and CT evaluation.</td>
<td>Not specified for T-Type fractures; good reduction in 84% of all patients, with a Harris Hip Score “Good” in 75%.</td>
<td>Not specified</td>
</tr>
<tr>
<td>Stökle et al.</td>
<td>2000</td>
<td>50 patients, 2 of them with T-Type acetabular fractures</td>
<td>2 years</td>
<td>2 T-type displaced acetabular fractures</td>
<td>Open reduction and internal fixation; with cortical screws of 5.5 mm.</td>
<td>Not specified</td>
<td>Simple X ray and clinical evaluation and CT scan evaluation</td>
<td>Anatomic reduction (<1mm) for the T-Shaped fractures.</td>
<td>Not specified</td>
</tr>
</tbody>
</table>
- Visualization of the intraarticular damage is not possible.
- A simultaneous implantation of a total hip replacement is not possible through the same approach.

The case of an anterior hip subluxation following fixation of a T-shaped acetabular fracture through an extended iliofemoral approach. The substantial muscle exposure of the lateral aspect of the acetabulum and the circumferential capsulotomy related to the use of the iliofemoral approach were retained as factors promoting this complication. In case early postoperative mobilization is impossible, temporarily maintaining the limb in abduction and flexion can be recommended after an extended iliofemoral approach with circumferential Capsulotomy [18-21].

Conclusion

Our literature review reveals that one of the main goals in the surgery of the fractures of acetabulum must be the anatomical reconstruction of the articular surface [22,23]. Not all complex fracture types have the same outcome, T-shaped fractures having the worst clinical results. Male gender, the use of an extensile approach, trochanteric osteotomy, presence of extensive cartilage injury, need of a complementary second approach, T-shaped fracture, or concomitant abdominal, chest, or head injury are associated with the formation of heterotopic ossification [12].

<table>
<thead>
<tr>
<th>Citation</th>
<th>Year</th>
<th>Group</th>
<th>Patients</th>
<th>Follow-up</th>
<th>Fractures</th>
<th>Fixation</th>
<th>Clinical Evaluation</th>
<th>Surgical Treatment</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simonian et al. [4]</td>
<td>1995</td>
<td>8 cadaveric hemipelvic specimens</td>
<td>No data</td>
<td>T-type acetabular fracture</td>
<td>Plate and screws</td>
<td>No needed: cadaveric hemipelvic specimens</td>
<td>Specimens were loaded 25 times in a cyclic manner to 150 N for each type of fixation evaluated</td>
<td>Surgical treatment:</td>
<td>Avascular necrosis of the femoral head in one case. Good clinical and radiological outcomes in the other two cases</td>
</tr>
<tr>
<td>Roff and Matta</td>
<td>1993</td>
<td>three patients</td>
<td>18 months - 8 years</td>
<td>2 associated T-type posterior wall fractures 1 T-type fracture</td>
<td>Open reduction and internal fixation, plate and screws</td>
<td>No described</td>
<td>Simple X-ray and clinical evaluation</td>
<td>Surgical group: 2 infections, 1 iterative luxation of the femoral head, peroneal palsy in 2 cases.</td>
<td></td>
</tr>
<tr>
<td>ChiBoub et al.</td>
<td>1998</td>
<td>52 patients</td>
<td>3.5 years</td>
<td>11 T type fractures, 41 transverse fractures. All of them associated with posterior column fracture</td>
<td>Open reduction and internal fixation: posterior plate in 17 cases and only screws in 5 cases. Conservative treatment in the rest of the patients.</td>
<td>Kocher-Langenbeack approach</td>
<td>Simple X-ray and clinical evaluation (Merle D’Aubigné’s scale)</td>
<td>Surgical treatment:</td>
<td>Conservative treatment: thrombophlebitis, 3 cases of superficial infection.</td>
</tr>
<tr>
<td>Fica et al. [2]</td>
<td>1998</td>
<td>8 patients of a total of 84 patients with acetabular fractures</td>
<td>5.5 years</td>
<td>Displaced acetabular T-type fractures</td>
<td>Plate and screws</td>
<td>Kocher-Langenbeck Extended iliofemoral ilioinguinal</td>
<td>Clinical evaluation: Merle D’Aubigné’s scale Simple X-ray evaluation according to Matta’s criteria</td>
<td>Surgical group:</td>
<td>Very good clinical score</td>
</tr>
<tr>
<td>Hamrion</td>
<td>2000</td>
<td>Group 1: 22 patients Group 2: 15 patients</td>
<td>Group 1: 10-25 years Group 2: 5 years.</td>
<td>37 T-type acetabular fractures</td>
<td>Open reduction and internal fixation Group 1: posterior column plate. The pelvic brim was not restored. Group 2: anterior column 3, 5 mm reconstruction plate. In 1 case, one additional plate at the anterior column. The pelvic brim was restored.</td>
<td>Group 1: posterior approach. Group 2: ilioinguinal approach-Kocher-Langenbeack approach.</td>
<td>Simple X-ray and clinical evaluation (Merle D’Aubigné’s hip score)</td>
<td>Group 1: Displacement of the pubo-acetabular fragment in all cases.</td>
<td></td>
</tr>
</tbody>
</table>

| Table 1: summary of the main studies about the t-shaped fractures of the acetabulum. | |

J Trauma Treat
ISSN: 2167-1222 JTM, an open access journal
Volume 5 • Issue 2 • 1000303
Surgical indications for acetabular fractures are joint incongruency (>2 mm displacement), intrarticular fragments, hip joint subluxation or instability, posterior wall fracture with hip instability, roof arc measurement less than 45° on any simple Rx or progressive neurologic damage [24].

Nowadays, surgical indication with ORIF is the more frequently used. Non-surgical treatment is not preferred due to the longtime of weight bearing, inability to restore joint congruity surface and higher incidence of early hip osteoarthritis. In elderly patient, sometimes ORIF with percutaneous osteosynthesis is the main indication due to patients comorbidities although reduction of the fracture is not a perfect result [25,26].

ORIF allows surgeons to obtain anatomical reduction of the fracture, stable internal fixation and permit early mobilization of the joint. ORIF is more difficult as more complex is the fractures to reduce and this is the main reason of poor results in outcomes for beginners surgeons [26].

Trauma centres should designate a group of surgeons who will consistently treat these fractures in order to obtain more experience and better results. Acetabular surgery is demanding, and a high rate of complications can be expected.

References