Journal of Generalized Lie

The Universal Parametric Equation

Paul TEC*
BScE, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada

Abstract

In this paper, we use Astrotheology (AT) Mathematics and linear algebra to develop a Universal Parametric Equation. We consider Energy, Gravity, Green's Theorem the Clairnaut D.E., Matrices and Euler's identity to derive a plot of the parametric equation which has critical values where it crosses itself or becomes a point.

Keywords: Energy; Universal equation; Gravity; Perception; Space; Linear algebra; Speed of Light; Cairnaut

Introduction

Here is the simplest solution to the universe (and many other two pole problem).

If you have two opposite poles, say 1 and $0=$ binary, you have a two pole problem. Since you have fraction is between 0 and 1 , it is the derivative and the multiple is numbers above 1 . We are concerned only with the fractions. The multiple is the function, and the derivative is the fraction [1].

$$
\begin{aligned}
& y^{\prime}=y \\
& 0.8415=\sin \text { 1qusakian=cos } 1 \text { qusackian } \\
& y=\sin =\cos \\
& y^{\prime}=0.8415
\end{aligned}
$$

The universe is a two pole problem. It is good on the on hand and evil on the other. It is a two pole problem. How many two pole problems can you think of. Here is your solution to them.

Cones

The Trapezoid or Vector space is E^{\star}. It intersects a cone as follows:

E *t=Cone

$\mathrm{E}^{\star} \mathrm{t}=\mathrm{ME} \wedge 2$
$2 \mathrm{sqrt2}{ }^{*} 396=4.486(0.8415)(0.8415)$
$112=31.766=31.8 \mathrm{~Hz}$
$\mathrm{t}=\mathrm{ME}$
$\mathrm{t} / \mathrm{M}=\mathrm{E}=0.222$
$\mathrm{dt} / \mathrm{dt}{ }^{*} \mathrm{dt} / \mathrm{dM}=\mathrm{dE} / \mathrm{dt}$
$1^{*} 1 / 2=\mathrm{dE} / \mathrm{dt}$
1/2=dE/dt
Integral $1 / 2 \mathrm{dt}=\mathrm{E}$
$1 / 2 \mathrm{t} / 2=\mathrm{Et}=\mathrm{E}$
$1=1(396 \times 396)$
45 degrees triangle
Area $\mathrm{O}=\mathrm{Pi} \mathrm{R} \wedge 2$
$\mathrm{R}=26.666=\mathrm{F}$

The 11 Equations of the Universe
$\mathrm{F}=\mathrm{Ma}$
$\mathrm{c}=\mathrm{v}=\mathrm{s} / \mathrm{t}$
$\mathrm{v}=1 / \mathrm{e}$
$\mathrm{T}=1 / \mathrm{freq}=1 / 1 / \mathrm{Pi}=\mathrm{E}$
$2\left(\mathrm{E} \wedge 2+\mathrm{t}^{\wedge} 2\right)=1 \wedge 2$
$1 / \mathrm{e}^{\wedge}-0.15=\mathrm{v}$
$\mathrm{Pi}=-\mathrm{e}=\mathrm{E}=1 / \mathrm{v}=\mathrm{cuz}$
$\mathrm{Y}=\mathrm{e}^{\wedge}-\mathrm{t} \cos (2 \mathrm{Pi} \mathrm{t})$
$\mathrm{d} / \mathrm{d} / \mathrm{dt}=\mathrm{E} / \mathrm{c}^{\wedge} 2$
$1-\mathrm{E}=2 \mathrm{G}$
$\sin \mathrm{t}=\cos \mathrm{t}$
$\mathrm{E} x \mathrm{xt}=0.858$
$\mathrm{ExtXE}=\mathrm{s}$
$\mathrm{E} \wedge 2 \mathrm{t}=\mathrm{s}$
$1 / \mathrm{e}^{*} \mathrm{t}=\mathrm{s}$
$\mathrm{t} / \mathrm{e}=\mathrm{s}$
$\mathrm{s} / \mathrm{t}=1 / \mathrm{e}$
$\mathrm{v}=1 / \mathrm{e}$
E xEcos $60=0.3681=1 /$ base e
here is Only 1 Thing in The Universe
$\mathrm{E}=1 / \mathrm{t}$
$3.14159=1 /[1 / 31.8]$
$\mathrm{Pi}=\mathrm{Pi}$

[^0]$\mathrm{Pi} / \mathrm{Pi}=1=\mathrm{GOD}$
God * Human Mind=1
1/Human Mind=GOD
1/God=Evil=Human Mind.
The New Testament tells us that "In Him, we live and move and have our being." ACTS 17.28 We are inside of God. Einstein showed that Mass is Energy. The physical universe is a mass phenomenon [2]. Since Mass is energy, then God is Energy. Physics had yet to define what energy is, expect to define what it does, namely" the ability to do work."

Second, Energy, we know cannot be created nor destroyed. God was not created. He is the only thing that cannot be created. He has neither beginning nor end. Gods is eternal, and is therefore energy.

Since all the Cusack Physical constraints must coincide with each other (they are all interrelated), then tip to tale vector should be used. Here are the 11 vectors [3].

Time is stretched until sine=cosine.
2 sqrt 2 * sqrt $396=1 \mathrm{rad}=\mathrm{t}$
sqrt[2 sqrt $2 * 396]=1120=$ c
$c=v / t$
$c^{\star} t=v=E$ where $\sin =c o s$
There really are only two vectors in the universe. They are energy and time. mass is energy, and distance is time.

```
\(\cos \mathrm{x}=\) INTEGRAL \(\mathrm{e}^{\wedge} \mathrm{x}\)
```


INTEGRAL $\mathrm{e}^{\wedge} \mathrm{x}^{*} \cos \mathrm{x}=1$

$1 / e^{\wedge} x=\cos x$

Derivative

$1 / X=-\sin x$
$\operatorname{Ln} x=\cos x$
$e^{\wedge} \operatorname{Ln} x=e^{\wedge} \cos x$
$\mathrm{x}=\mathrm{e}^{\wedge} \cos \mathrm{x}$
derivative
$1=e^{\wedge} \cos x$
$\operatorname{Ln} 1=0=\mathrm{e}^{\wedge} \cos \mathrm{x}$
$\operatorname{Ln} 0=0=\cos x$
$\mathrm{x}=\mathrm{Pi} / 2$
For sine:
$-\sin \mathrm{x}=1 /$ INTEGRAL $\mathrm{e}^{\wedge} \mathrm{x}$
$-\sin x^{\star} e^{\wedge} x=1$

Derivative

$1 / X=-\sin x$
$\operatorname{Ln} \mathrm{x}=-\sin \mathrm{x}$
$\operatorname{Ln} \mathrm{e}^{\wedge} \mathrm{x}=-\sin \mathrm{x}$
$1=-\sin \mathrm{x}$
$x=-P i / 2$
$1 / 0=11 / 1=1$
$0 / 1=00 / 0=1$
$[0 / 0] /[1 / 0]=1 / 1=1$
There had to be something!
The universe can be described as a cone or as a series.
If we use 10 digits as the bases of our number system, $1 / 81=0.123456790$ is the most important number.
$1 /(81)=1 / c^{\wedge} 2{ }^{\star} 1 / c^{\wedge} 2$ where $\mathrm{c}-2.997929 \sim 3 \mathrm{E}=1=\mathrm{Mc}^{\wedge} 2=\mathrm{M}^{\star} \mathrm{M}$
$=2 \mathrm{M}$
$\mathrm{dM} / \mathrm{dt}=2$
$e^{\wedge}(1 / 7)=e^{\wedge} .14285=1.1535$
$2.718^{\wedge} 4=54.57551085$
$5=$ holy spirit $7=$ Jesus $4=$ me $1=$ God $0=$ infinity $8=$ universe
Energy sink
$\mathrm{E}=0.866$
$\mathrm{E}=\mathrm{Mc}^{\wedge} 2$
$0.866=M^{*} 9$
$\mathrm{M}=0.0964$
$0.964 / 79.9182 / 6.023=0.202=\mathrm{Y}(\mathrm{BeCl} 2=79.182 \mathrm{gm} / \mathrm{mole})$
$\mathrm{E}=\mathrm{Mc}^{\wedge} 20.202=\mathrm{M}^{*} 9$
$\mathrm{M}=4.486 \mathrm{E}=0.858$.

3-D space

The whole universe can be reduced to vectors energy and time. The space vector is the cross product of e-t
$||E||||t||||s|| \cos 60={ }^{\star}{ }^{\star} 1\left(1 / 9=1{ }^{\star} 1 / 2\right.$
$s=1 / 2$
$\mathrm{s}^{\wedge} 3=0866$
$\mathrm{E}=1 / \mathrm{t}$
t^{\wedge} 2- $\mathrm{t}-1=1 / \mathrm{t}$
$\mathrm{t} \wedge 2-\mathrm{t}-(1 / \mathrm{t})-1=0$
Lett=1
$\mathrm{E}=3=\mathrm{c}=\mathrm{d} \mathrm{s} / \mathrm{dt}$
$\mathrm{E}=\mathrm{ds} / \mathrm{dt}=\mathrm{c}$
$\mathrm{E}=\mathrm{c}$
$\mathrm{Mc}=1$
$\mathrm{c}=3$
$\mathrm{M}=1 / 3$
$\mathrm{M}=1 / 3^{\star} 4.486=1.5$ Mass Gap.

Energy density

Vol of Ellipsoid=4/3 Pi abc
$=4 / 3 \operatorname{Pi}(66)(24)(3)=19905$
Ehat $=) .8515{ }^{*} \mathrm{Pi}$
$=0.001344 \sim s$
$\left.\mathrm{Y}=\mathrm{e}^{\wedge}-\mathrm{t}^{*} \cos (2 \mathrm{Pit})=0.1281^{*} 0.7441\right)=0.0955$
$\mathrm{s}=0.5044$
$\sim 1 / 2$.

Cones

The Trapezoid or Vector space is $\mathrm{E}^{\star} \mathrm{t}$. It intersects a cone as follows:
E ${ }^{*}$ t=Cone
$\mathrm{E}^{\star} \mathrm{t}=\mathrm{ME}$ ^2
$2 \mathrm{sqrt2} * 396=4.486(0.8415)(0.8415)$
$112=31.766=31.8 \mathrm{~Hz}$
$\mathrm{t}=\mathrm{ME}$
$\mathrm{t} / \mathrm{M}=\mathrm{E}=0.222$
$\mathrm{dt} / \mathrm{dt}^{*} \mathrm{dt} / \mathrm{dM}=\mathrm{dE} / \mathrm{dt}$
$1^{*} 1 / 2=\mathrm{dE} / \mathrm{dt}$
$1 / 2=\mathrm{dE} / \mathrm{dt}$
Integral $1 / 2 \mathrm{dt}=\mathrm{E}$
$1 / 2 \mathrm{t} / 2=\mathrm{E} \mathrm{t}=\mathrm{E}$
$1=1(396 \times 396)$
45 degrees traiangle
Area $\mathrm{O}=\mathrm{Pi} \mathrm{R} \wedge 2$
$\mathrm{R}=26.666=\mathrm{F}$
GE^3-Ln (31.8)=s=113.62
$\mathrm{G}=2 / 3$
E^3-3/2* $\operatorname{Ln} 31.8)=3 / 2^{*} 13.62$
$\mathrm{E}=2.9448 \sim \mathrm{c}$
E=sin theta ${ }^{*} \mathrm{c}$
$1 / 2<\mathrm{c}<3$
$\mathrm{E}=0.42=\mathrm{cuz}, 2.52$
$\mathrm{dc} / \mathrm{dt}=\mathrm{dv} / \mathrm{dt}=\mathrm{a}=0.8415$
\sin theta $=\mathrm{E} / \mathrm{c} 0.8415=\mathrm{E} / 3 \mathrm{E}=2.5245$
$1 / \mathrm{E}=\mathrm{t}=0.4$.
The Universal Equation, Gravitational Constant, and Human Perception
dE^2/dt^2-E=Ln t
Double integral
INTEGRAL dE/dt-E^2/2=INTEGRAL (1/t) +C1

```
E-2/3E^3=Ln t+E +C2
2/3 E^3=Ln t+C2
AND
E=1/t
2/3 E^3=Ln (1/E)+C2
G}\mp@subsup{}{}{*}\mp@subsup{\textrm{E}}{}{\wedge}3-\textrm{Ln}(31.8 Hz)-C2=
6.67 * Pi-3.4549=C2
13.62=C2
1-C2=0.864 ~0.866
G}\mp@subsup{}{}{\star}(\textrm{E}^3)-\textrm{Ln}(31.8Hz)=
```

This is where humanity in universal space and matter meets god in time [4].

G is $2 / 3$ because of this equation. G is the double integral of E viz 2/3 E^3

Human Perception is 31.8 because it is $1 / \mathrm{Pi}$.

Logic

Gy^3-Ln (1)=13.62
$0.666 y^{\wedge}$ - $-0=13.62$
$y^{\wedge} 3=13.62^{\star} 1.5$
$y=e$
$y=y^{\prime}$.
So the 11 logic statements ask if there is a universe or not. Of course there is no choice. There is a universe!

$$
\begin{aligned}
& \left.\mathrm{F}=\mathrm{Ma}=\mathrm{E} / \mathrm{c}^{\wedge} 2\right]^{*} \sin \mathrm{t}=\mathrm{E} /[1-\sin \mathrm{t}]^{*} \sin \mathrm{t}=\mathrm{E} \\
& \mathrm{c}=\mathrm{v}=\mathrm{s} / \mathrm{t}=[1-\sin \mathrm{t}] / \mathrm{t} \\
& \mathrm{v}=1 / \mathrm{e}=1 / \sin \mathrm{t} \\
& \mathrm{~T}=1 / \mathrm{freq}=1 / 1 / \mathrm{Pi}=\mathrm{E} \\
& 2\left(\mathrm{E}^{\wedge} 2+\mathrm{t}^{\wedge} 2\right)=1^{\wedge} 2 \\
& 1 /\left[\mathrm{e}^{\wedge}-0.15\right]=\mathrm{v}=1 /[\mathrm{Temp}]=1 / \sin \mathrm{t} \\
& \mathrm{Pi}=-\mathrm{e}=\mathrm{E}=1 / \mathrm{v}=\mathrm{cuz} \\
& \mathrm{Y}=\mathrm{e}^{\wedge}-\mathrm{t} \cos (2 \mathrm{Pi} \mathrm{t})=\mathrm{E}=\mathrm{Temp}{ }^{\wedge}-\mathrm{t} \cos (2 \mathrm{Pit}) \\
& \mathrm{dM} / \mathrm{dt}=\mathrm{E} / \mathrm{c}^{\wedge} 2=\mathrm{E} /[1-\sin \mathrm{t}] / \mathrm{t} \\
& 1-\mathrm{E}=2 \mathrm{G}=2 / 3^{*} \mathrm{E} \wedge 3 \\
& \sin \mathrm{t}=\cos \mathrm{t} \\
& \text { Let } \mathrm{t}=1, \mathrm{E}=1=11 \text { Logic Equations } \\
& \text { Sep } 25
\end{aligned}
$$

$\mathrm{E}=\mathrm{Pi} \mathrm{t}=1 / \mathrm{Pi}$.
What if all you had was gravity that drew all the strings together in a mass to form on giant blob of "water" made from billions and billions on smaller drops? You can see this in you kitchen sink. So we really don't have strings, but "blobs". So the universe is a "giant blob." gravity is the double integral of energy [5].

Green's theorem

INTEGRAL INTEGRAL d2E.dt2 dt dt=2/3E^3
[The double integral is the area surrounded by the line]
So gravity is the area subtended by the energy and time plane
GE^3-Ln $t=s$
GE^3=s+Ln t
$G E \wedge 3=||E||| | t| | \cos 60$ degrees - Ln t
$\mathrm{Pi} \wedge 2 \cos 60-0=4.93=1 / 0.3202=1 / \mathrm{Y}$
$\mathrm{dM} / \mathrm{dt}=2 \mathrm{Pi}^{*} 1 / \mathrm{Pi}$
$\mathrm{dM} / \mathrm{dt}=2$
$\mathrm{E}=\mathrm{Mc}^{\wedge}{ }^{2 \mathrm{E}}=\mathrm{dM} / \mathrm{dt}^{*} \mathrm{c}^{\wedge} 2$
$\mathrm{c}=$ sqrt $\mathrm{Pi} /$ sqrt v2 $=1.2533$ Posted 12 minutes ago by Paul T E Cusack 0 Add a comment
$x^{\wedge} 2+y^{\wedge} 2=P i$
$2 \mathrm{x}^{\wedge} 2 \mathrm{Pi} \mathrm{x}=$ sqrt Pi/sqrt $2=1.2533$
This is the minimal energy when jesus entered time.
NOW $x^{\wedge} 2-x-1=P i$
(1.2533) $-1.2533-1=-0.6825$
$\mathrm{Pi}=1 /[1-0.6825)$
The circle meets the golden mean equation
God is a circle of radius 1 and area $=\mathrm{E}=\mathrm{Pi}$
THE Cusack Universal Equation is:
d2E/dt2-E=Ln t
or,
GE^3-Ln $\mathrm{t}=\mathrm{s}$
$0.666^{*} \mathrm{E}^{\wedge} 3-\operatorname{Ln} 1=\| \mathrm{E}| || || | \cos 60$ degrees
$\mathrm{E}=1.2533$
$\mathrm{E}=-1.2533=\mathrm{Emin}=\mathrm{t} \wedge 2-\mathrm{t}-1$ (GOLDEN MEAN)
You might do a sensitivity analysis on this circuit?
$x^{\wedge} 2-y^{\wedge} 2=P i$
$2 x^{\wedge} 2=P i$
$\mathrm{x}=\mathrm{sqrtPi} \mathrm{Pq} \mathrm{st} 2$
$x^{\wedge} 2-x-1=1-0.625=1 / \mathrm{Pi}=31.8 \mathrm{~Hz}$ (Human Perception)
The capacitor should be $\mathrm{C}=\mathrm{Pi}$
Have fun! My full model is available at LULU.com Astrotheology The Missing Link.
$\mathrm{V}=\mathrm{iR} \mathrm{G}| | \mathrm{E}| || | \mathrm{t} \| \cos 60=[\mathrm{r}+1 / \mathrm{c}+\mathrm{L}] \mathrm{i}$
$\mathrm{R}=$ slope $\mathrm{m}=1 /$ cuz $1 / \mathrm{C}=\mathrm{Pi} \mathrm{L}=2$.

Cusack Analogue Circuit Equation: (CACE)

$\mathrm{G}^{*} 0.8415^{*}$ sqrt $3 / 2=\left[\mathrm{Pi}-\mathrm{e}+\mathrm{Pi}+0.8415\left(\right.\right.$ sqrt $\left.3 /\left(2 \mathrm{c}^{\wedge} 2\right)\right] \mathrm{i}$
G^{*} unit eigenvector $=1$ cycle $-\mathrm{e}+\sin 1$ unit eigenVector/[2 unit eigenValue^2]
G^{*} unit eigenvector $=3 \mathrm{Pi}-2 \mathrm{e}+$ eigen $\mathrm{v} \mid$ ector/eigen Value^2
G^{*} unit eigenvector=eigen $\mathrm{Value} \mathrm{Pi}+\mathrm{dM} / \mathrm{dt}^{*} \mathrm{e}+$ eigenvector/eigen value^2

The universe is where the FUNCTION $\mathrm{x}^{\wedge} 2-\mathrm{x}-1=0$ meets the RELATION $x^{\wedge} 2-y^{\wedge} 2=1$

The FUNCTION is the Derivative whereas the RELATION is the Integral. So $y=y^{\prime}=$ Integral $\mathrm{y}=\mathrm{e}^{\wedge} \mathrm{x}$.

Speed of light accuracy

$\mathrm{c}+\mathrm{dV} / \mathrm{dt}=2.9953+0.8660=2.9953+0.0026=2.9979 \mathrm{cf} 2.997929$ OK
$\mathrm{M}+\mathrm{dM} / \mathrm{dt}=4.486+2=6.4862{ }^{*} 0.08660=0.1732$
$0.1732 / 6.486=0.0267$
$6.486^{*} 0.00267=6.6592$
$\mathrm{E}=\mathrm{Mc}^{\wedge} 2$
$6.6592 * 2.9979 \wedge 2=26.9433$
$26.9433 / 26.667=0.0276$
$0.9962+0.00276=0.99901$ part in 1000 to 4 significant digets.
$\mathrm{F} / \mathrm{s}=26.667 / 0.1334=199.91$ part in 1000 to 4 significant digits
EigenVector=sqrt $3 / 1=\tan 60$ degrees $/ 1=$ sqrt 3
Why is the speed of light $\mathrm{c}=3$?
$\mathrm{E} / \mathrm{t}=\mathrm{E}^{\star} 1 / \mathrm{t}=\mathrm{E}^{\wedge} 2=(\text { sqrt } 3)^{\wedge} 2=3=$ EigenValue
The universe exists where the eigenvalue $=c=$ eigenvector $=$ sqrt 3
Sine Ets=sqrt 3, this is why the speed of light is exactly 3.00000000
Power=Vi
$\mathrm{W}=\mathrm{Vi}^{*} \mathrm{t}=\mathrm{E}^{\star} \mathrm{s}^{\star} \mathrm{t}=1 / \mathrm{c}^{\wedge} 2$
Sep 27
$1 / 2=0.1334 / 0.666=\mathrm{s} / \mathrm{G}$
$\mathrm{Extx} \cos 60$ degrees $=1 / 2 \mathrm{~s} ? \mathrm{G}^{\star} \mathrm{G}=1$
G Eigenvector $=2 \mathrm{Pi}-\mathrm{e}+\sin 1 / 2^{*}$ Eigen vector/Eigen value $\wedge 2$
$\mathrm{G}^{\star} \mathrm{s} / \mathrm{G}=2$ Pi-e +). 000
$\mathrm{sF}=2 \mathrm{Pi}-\mathrm{e}$
$\mathrm{s}=0.1334=\mathrm{E}(0.1585)=2 \mathrm{Pi}-\mathrm{e}] / \mathrm{F}$
$\mathrm{E}(1-\sin 1)=(2 \mathrm{Pi}-\mathrm{e}] / \mathrm{F}$.

Minimum Polynomial and the Universe

$\mathrm{cA}=\operatorname{det}(\mathrm{cI}-\mathrm{A})<==$ charastic polynomial
For the unit diagonal matrix, (Three orthogonal unit vectors)
$[1,0,0 / 0,1,0 / 0,0,1]=\mathrm{A}$
$\operatorname{det} \mathrm{A}=1$
minimum polynomial $=(x+1)^{\wedge} 3$
Set equal to universe $\mathrm{e}^{\wedge} \mathrm{x}$
$(x+1)^{\wedge} 3=e^{\wedge} \mathrm{x}$
Let $\mathrm{x}=1$ and take the Ln of both sides:
$3(x+1)=1$
$3 \mathrm{x}+3-1=0$
$3 x+2=0$
$3 x=-2$
$x=-2 / 3$
$\mathrm{x}=-\mathrm{G}$
Char steric polynomial and the minimum polynomial
$(x+1)^{\wedge} 3=1$
$x^{\wedge} 3-3 x^{\wedge} 2-3 X-1=1$
$\mathrm{x}=\mathrm{t}=1$
$=7$ periods of time $=7000$ years We are at the end of the 6th period.
In an 11 dimension universe, we have a matrix wit 11 1's on the diagonal.

The char steric polynomial:

```
\((1+11)^{\wedge} 11=1\)
\(x^{\wedge} 5+5 x^{\wedge} 4-=4 x^{\wedge} 3+16 x^{\wedge} 2+5 x+2=1\)
\(\mathrm{x}=1\)
\((x+1)=3=c x=c^{\wedge} 2\)
\(\operatorname{det}(\mathrm{cI}-\mathrm{A})=3\)
\(3[1,0,0 / 0,1,0 / 0,0,1]-A=3\)
\([3,0,0 / 0,0,3 /, 0,0,3]-[\mathrm{A}]=3\)
[a] \(=3 / 27=1 / 9=1 / c^{\wedge} 2\)
\(3,0,0 / 0,3,0 / 0,0,3]-1 / 3=1\)
\(3[1,0,0 / 0,3,0 /, 0,0,3]-1 / 3=1\)
\([9,0,0 /, 0,9,0 / 0,0,9]=4\)
\(\operatorname{det}(\mathrm{cI}-1 / \mathrm{c})=[3]\)
\(\operatorname{det}(\mathrm{cI})\)
[3,0,0/0,3,0/0,0,3]
\(27=4 / 3\)
\(0.202=Y\)
\((\mathrm{t}+1)^{\wedge} 11=\mathrm{s}^{\star} \mathrm{e}^{\wedge}-\mathrm{t}\left(\cos \left(2 \mathrm{Pi}^{\star} \mathrm{t}\right)\right.\)
```

So you have Energy (God) and time (See Genesis 1 for the separation of light and night.)

A vector space comes into existence. As the Energy vector rotates relative to the time vector, when they are 60 degrees apart, the third dimension of space is created. As s space is created, the energy density reaches $\mathrm{G}=2 / 3=6.67$. This is when the conditions exist for $\mathrm{E}=0.8415$. So $\sin =\cos =0.8415$ and Momentum and Force are equal. The wavelength of $1 / \mathrm{Pi}=31.8 \mathrm{~Hz}$ is right to fit through the double screens. Mass is formed. The speed of light is 3 . Energy is sqrt 3 which is the leg of the $\cos 60$ degrees of the Energy-time vector space. $\mathrm{E}=1 / \mathrm{tc}$ is the Energy ${ }^{\wedge} 2$.

The Mass is formed by work like the inductor. The resistance of the matter is cuz=Pi-e. Energy expenditure is minimized as the energy parabola meets the circle. This is where the function meets the integral. The only function I know that fits is the exponential function e?x. When $\mathrm{x}=0.1585$, the three dimensions line up, $\sin \mathrm{x}, \cos \mathrm{x}, \mathrm{e}^{\wedge} \mathrm{x}$. This reoccurs to form Mass at 31.8 Hz . The material universe exists where the dot product=the cross product.There are 1lequations that relate energy and time. The universe had to exist because $\mathrm{e}^{\wedge} \mathrm{x}$ is telescopic. There are 11 questions of logic [6].

So that's the story of the material universe. Just like the Electromagnetic Spectrum, the is whole range of Gods mind that isn't Mass. We are stuck in Mass until we are release into real space, the Spiritual World.

As for the 4 forces, Elecrto, Magnetic, Nuclear, and Gravity, only one is necessary, G. The other are explained by G. The universe is stretch so that all the blob of matter wants to get back together. This is why we have gravity. Its like the surface tension on a drop of water. Good and Evil are equal in power. One is a sine curve and the other is a cosine curve. That's all I can say. We only exist because God had no choice but to create the universe. He is Energy, and He created time. Time was His creation. The rest follows automatically.

```
Gravity is stretched energy
d2E/dt2=G
dE.dt * d/dt=G
Stretched energy * stretched time=g
lim Pi==> Infinity +lim x==>0=Integral x
Pi x+e^x x=x^2/2
x^2-2Pi-e^x=0.
Quadratic
x=-6.67=G
or x=0,.4216=cuz
```

Now square all terms:
$\mathrm{Pi}^{\wedge} 2 x^{\wedge} 2-x^{\wedge} 4 / 4=\left(e^{\wedge} x\right)^{\wedge} 2$
$x^{\wedge} 2\left(x^{\wedge} 2-4 \operatorname{Pi}-2.718 \wedge 2\right)=0$
$\mathrm{x}=0$
$x=2.667=F / 10$
or
$\mathrm{x}=1.3356=\mathrm{s}^{*} 10$
$(1+t)^{\wedge} 11=1$
$(1+1 / 81)^{\wedge} 11=$
$\operatorname{Ln}(1+0.012345679)=1.227$
$1 / 1.227=81.5 \sim 81$
$x=\operatorname{Ln} x$
$1 \mathrm{x} 10^{\wedge} 11 /\left[60^{\star} 60^{*} 365.25\right)^{*} \mathrm{c}=253 \mathrm{LY}$
Period:
$\mathrm{T}=253 \mathrm{LY}$
$(E)=e^{\wedge}-t$
$\mathrm{E}^{\star} \mathrm{dM} / \mathrm{dt}=$ Temp [=] J Kg/sec
2 sqrt3=Temp
Temp $=3.46$
$3.46{ }^{*} 4.486=15.54$
$\mathrm{E}=0.8446$
If $\mathrm{E}=0.8415$
$1 / 0.8415=1.6551$
Yc $=0.604$
$\mathrm{E}=\mathrm{Yc}$
So from above,
$(t+1)^{\wedge} 11=s{ }^{*} \mathrm{e}^{\wedge}-\mathrm{t}^{*} \cos \left(2 \mathrm{Pi}^{*} \mathrm{t}\right)$
And,
$\mathrm{d}^{\wedge} 2 \mathrm{t} / \mathrm{dt}{ }^{\wedge} 2-\mathrm{E}=\operatorname{Ln} \mathrm{t}$
$2\left(e^{\wedge}-1 / 3+1=e^{\wedge}-t \cos \left(2 \mathrm{Pi}^{\star} t\right)\right.$
$2\left(e^{\wedge}-0.333+1\right)=e^{\wedge}-t$
2^{*} sqrt $3=e^{\wedge-t}$
$\mathrm{dM} / \mathrm{dt} *$ Eigen vector Energy $=\mathrm{e}^{\wedge}-\mathrm{t}$
$1.72=\mathrm{e}^{\wedge}-\mathrm{t}$
$\mathrm{t}=0.809$
~ 81
$1 / 81=0.012345679$
This is 8 dimensions $(1+t) \wedge 8$
$(1+t)^{\wedge} 3=3$ dimensions
In an 11 dimension universe, we have a matrix wit 11 1's on the diagonal.

The characteristic polynomial:

```
\[
(1+11)^{\wedge} 11=1
\]
\[
x^{\wedge} 5+5 x^{\wedge} 4-=4 x^{\wedge} 3+16 x^{\wedge} 2+5 x+2=1
\]
\[
\mathrm{x}=1
\]
\[
(x+1)=3=c x=c^{\wedge} 2
\]
\[
\operatorname{det}(c I-A)=3
\]
\[
3[1,0,0 / 0,1,0 / 0,0,1]-\mathrm{A}=3
\]
\[
[3,0,0 / 0,0,3 /, 0,0,3]-[\mathrm{A}]=3
\]
\[
[\mathrm{a}]=3 / 27=1 / 9=1 / \mathrm{c}^{\wedge} 2
\]
\[
3,0,0 / 0,3,0 / 0,0,3]-1 / 3=1
\]
\[
3[1,0,0 / 0,3,0 /, 0,0,3]-1 / 3=1
\]
\[
[9,0,0 /, 0,9,0 / 0,0,9]=4
\]
\[
\operatorname{det}(c I-1 / c)=[3]
\]
\[
\operatorname{det}(c I)
\]
```

$$
[3,0,0 / 0,3,0 / 0,0,3]=4 / 3
$$

$$
27=4 / 3
$$

$$
0.202=\mathrm{Y}
$$

$(t+1)^{\wedge} 11=s^{*} \cos (2 \mathrm{Pit})$

- Oct 4
$[\mathrm{A}]=1 / \mathrm{c}^{\wedge} 2=1 / 9$
$[\mathrm{A}]=1 /$ sqrt 3
$1^{`} / 9^{*} 1 /$ sqrt $3=15.58$
$1-15.58=84.42=\sin 1$
$(a+i B)(x-i y)=(a x-B y)+i(B x+a y)$
$\mathrm{i}=\operatorname{sqrt}(-1)=0.618$
$\mathrm{i}=0+1 \mathrm{i}$
So $a x-B y=0 a x=B y=0$
$y=1$
$0.618(B x+a y)=1$
$B x+a y=1$
$a x^{\wedge} 2+a(1)-1=0$
$\mathrm{a}=$ time t
$\mathrm{x}^{\wedge} 2-\mathrm{x}-1=0$.

Golden mean!

Rotation operator
(1,1+1 rad)
$\mathrm{R}=\operatorname{sqrt}\left[1^{\wedge} 1+4^{\wedge} 2\right]$
$\mathrm{t}=0.4040$
$\mathrm{e}^{\wedge} \mathrm{t}=\mathrm{T}$ Period=253.36
$\mathrm{e} 1^{*} \sin 6-+\mathrm{e} 2 * \cos 60=$ sqrt 3
$\mathrm{e} 1=1, \mathrm{e} 2=\mathrm{sqrt} 3$
$\|A\|=[\cos 60,-\sin 60, \cos 60, \sin 60]$
$\|\mathrm{A}\|=1 / 2+1 / 2+0.866-0.866=1$ radian
$=\mathrm{t}$
Ael=ce1, Ae2
$(1)(1)=(3)(1),(1)(s q r t 3)$
$1=3$,sqrt 3
1=eigen value, eigenvector
eigenvector/eigenvector $=1 /$ sqrt $3=0.5774$ (HEBREW YEAR THIS YEAR)

$=\cos 60$ degrees

$\mathrm{L}(\mathrm{x})=\operatorname{INTEGRAL} \operatorname{l}(\mathrm{x})^{*} \mathrm{x}(\mathrm{t}) \mathrm{dt}$
Let $\mathrm{l}(\mathrm{x})=$ the continuous function $\mathrm{e}^{\wedge} \mathrm{x}$. Let $\mathrm{L}(\mathrm{x})=\mathrm{t}=1 \quad 1=\mathrm{e}^{\wedge}-\mathrm{t}^{*} \mathrm{x}^{\wedge} 2 / 2$
$2=e^{\wedge}-x^{*} x^{\wedge} 2$

$$
\begin{aligned}
& \mathrm{C} 1=1 / 2=\mathrm{e}^{\wedge}-\mathrm{x}^{*} \mathrm{x} \\
& \mathrm{~s}=\mathrm{e}^{\wedge}-\mathrm{x}^{*} \mathrm{x} \\
& \mathrm{~s} / \mathrm{t}=\mathrm{v}=0.8415=\mathrm{e}^{\wedge}-\mathrm{t} \\
& \mathrm{v}=\mathrm{t}=\mathrm{s} .
\end{aligned}
$$

Linear Space and Vector Arguments

Vector Argument=Linear derivative: $1.73 / \mathrm{c}=2 \mathrm{t}-1=\mathrm{s}$
1 -sqrt $3 / 3=2\left(1^{`}\right)-1=s$
1 -sqrt $3 / 3=-($ Pi-e $)=-$ cuz
Now, the Linear Space:
$s=L(x+y)-L(x)+L(y)$ where $x=t$ and $y=E$
$s=L(x+y)-1=s q r t 3 / 3$
$s=||E||| | t| | \cos 60$ degrees $=-(c u z)$
$=1 / 2=-($ Pi-e $)=-2(c u z)$
$=-0.8466=s=v=a$
From abbove:
$\mathrm{dM} / \mathrm{dt}^{\star} \mathrm{E}=\mathrm{e}^{\wedge}-\mathrm{t}$
$\mathrm{EdM} / \mathrm{dtE}=\mathrm{cuz}$
$\mathrm{E}(-1)=0.4233=\mathrm{cuz}$
$2 \mathrm{E}=-.08466=\mathrm{L}(\mathrm{x}+\mathrm{t})$
Linear Space.

From Matrix Analysis

$X(t)=e^{\wedge}[A t)$
is a matrix solution to
$X^{\prime}(t)=A X(t)$
Derivative $=$ function
Now from the 11 v questions of logic, and the derivative of the energy parabola:
$(\mathrm{x}+1)^{\wedge} 11=2 \mathrm{t}-1$
Let $\mathrm{t}=1$
$(x+1)^{\wedge} 1=2(1)-1$
$\mathrm{x}+1)^{\wedge} 112=1$
$=s^{*} e^{\wedge}-t^{*} \cos (2 \mathrm{Pit})$
$X^{\prime}(t)=s e^{\wedge}-t$
And from above,
$\mathrm{t}=\mathrm{e}^{\wedge}\{\mathrm{G}-\mathrm{t}\}$
The universe had to exist because the true answer to the 11 questions of logic solve.

The Vector Space of E-t crossed to yield spaces.
That is the final solution to the question of the existence of god.

"Q".E.D.

When the average energy density=minimum energy expenditure, the material universe pops into existence.

From above:
E ?2-E + Ehat $=0$
E ? $2-\mathrm{E}+0.8415=0$
$\mathrm{E}(\mathrm{E}-1)+0.8415=0$
$\mathrm{E}(\mathrm{E}-1)=-0.8415$
$\mathrm{E}=-0.8415 /[1-\mathrm{E}]$
$\mathrm{x}=0.8415 /[1-\mathrm{x}]$
$x^{\wedge} 2-x+0.8415=0$.

Quadratic

$\mathrm{x}=0.0247,0.9753$
$\mathrm{Y}=0.0247$
$1 / \mathrm{Y}=40.4=2(0.202)=2 \mathrm{Y}$
$2 \mathrm{Y}^{\wedge} 2=1$
$\mathrm{Y}=0.707=1 /$ sqrt 2
$\mathrm{Y}=\sin 45=\cos 45$
NOW, ZERO LAG=min T=0.4040
$\min \mathrm{E}=0.203$
$t^{\wedge} 2-t-1=$
Let $\mathrm{t}=0.4040$
-1.2408
$-1.2408^{*} 31.8=0.253=$ Period T
$t^{\wedge} 2-t-1=T^{*}$ freq
$2 \mathrm{t}-1=0.4040$
$\mathrm{t}=1 /$ sqrt $2=0.707$
From Pythagoras:
sqrt $[E \wedge 2-t \wedge 2]=0$
$\mathrm{E}^{\wedge} 4-\mathrm{E}^{\wedge} 2-1=0$
$E^{\wedge} 2=0$ or $-E^{\wedge} 2+1 / E^{\wedge} 2=1$
$2 \mathrm{E}^{\wedge} 2=1$
$\mathrm{E}=$ sqrt [1/2]
$\mathrm{E}=0.707=\mathrm{t}$
The efficient path for energy and time is $\mathrm{E}=\mathrm{t}=1 / \mathrm{SQRT} 2=\mathrm{E}$ hat
Vector $\mathrm{E}=1 /$ Vector t
||V.E ||X ||V.t|| cos theta=1
\cos theta $=1 / 2$
theta $=60$ degrees
The minimum energy to creat space s, is when $E=t$ at 60 degrees.
We know
$\mathrm{Y}=\mathrm{e}^{\wedge}-\mathrm{t} \cos (2 \mathrm{Pit})$
$=\mathrm{e}^{\wedge} 0.4040 \cos (2 \mathrm{Pi} 0.4040)=0.6676=\mathrm{G}$
Buy $\mathrm{Y}=0.203$
So $G * 31.8=0.203=Y$.
The Universe is like a Critical Path in Project Management when the capacitor discharges. Or its like a bolt of lightening. It takes the path of least resistance=TRUTH=1

Critical Path is the shortest possible path. It has zero lag on each activity. No energy is wasted. It is the most efficient path.
$2^{\wedge} 10+2^{\wedge} 1+2^{\wedge} 10=3072$
$3072 / 0.4040=7.6039$
$1-1 / 7.6=0.868=E$
$1.618=1+\mathrm{i}$
$=1+0.618$
$\mathrm{x}=1 /[\mathrm{x}-1]$
$(1+i)=1 /[(1+i)-1]$
$(1+i)(i)=1$
$\mathrm{i}=0.618$
If $x=c u z$ and $y=E$
cuz $=$ Pi-e
$\mathrm{E}=1 /(\mathrm{Pi}-\mathrm{e})$
$=2.3624$
$\operatorname{Ln}(2.3624)=0.8597 \sim 0.86=\mathrm{E}$
$\operatorname{Ln}(E)=\operatorname{Ln}(1 / t)=0.86$
$\operatorname{Ln}\left(y^{\prime}\right)=0.86$
$y^{\prime}=e^{\wedge} 0.86=2.3624$
$=y$
$y=y^{\prime}$
$y^{\prime}=y=E=1 / t$
$t=$ inverse of the material universe. The material universe is evil.
$\mathrm{E}=1-\cos 60{ }^{*} \mathrm{freq}^{*}(\sin 1+\cos 1)$
$=1-\mathrm{t}^{*} 1 / \mathrm{t}^{*}(\mathrm{t})$
$=1-1(\mathrm{t})$
$E=1-t$
$\mathrm{E}=1-(1 / \mathrm{E})$
$\mathrm{x}=1-1 / \mathrm{x}$
$\mathrm{x}+1 / \mathrm{x}=1$
$[1+(1 / \mathrm{x})] / \mathrm{x}=1$
$1+1 / \mathrm{x}=\mathrm{x}$
$(\mathrm{x}+1) / \mathrm{x}=\mathrm{x}$
$\mathrm{x}+1=\mathrm{x}^{\wedge} 2$
$x^{\wedge} 2-x-1=0$
Golden Mean!

Euler Energy Identity

$\mathrm{e}^{\wedge}\left(\mathrm{i}^{\star} \mathrm{x}\right)=\sin +\cos$
$\mathrm{e}^{\wedge} \mathrm{x}=$ sqrt 3
$\mathrm{x}=\mathrm{t}=0.888$
$0.888 / 2 \mathrm{Pi}=0.1415$
$\mathrm{E}=0.858$
$1-\mathrm{t} /(2 \mathrm{PI})=0.858=\mathrm{E}$
$\mathrm{E}=1-\mathrm{t} /(2 \mathrm{Pi})$
$\mathrm{E}=1-\cos 60 *$ freq $^{*} \mathrm{t}$
$\mathrm{E}=1-\cos 60{ }^{*}$ freq ${ }^{*} \mathrm{e}^{\wedge}(\mathrm{it})$
$\mathrm{E}=1-\cos 60 *$ freq $(\sin 1+\cos 1)$

- Oct 10

Euler's Identity

$\mathrm{e}^{\wedge} \mathrm{ix}=\sin \mathrm{x}+\cos \mathrm{x}$
$e^{\wedge}(0.618)(1.618)=\sin x+\cos x$
$\mathrm{e}^{\wedge} 1=\sin \mathrm{x}+\cos \mathrm{x}$

Derivative

$C=\sin x-\sin x$
$\mathrm{C}=0=$ slope $\mathrm{m} @ \mathrm{x}=1$ radian
$\sin \wedge 2 x-\cos ^{\wedge} 2=-1$
$\sin \wedge 2 \mathrm{x}+\sin \wedge 2 \mathrm{x}=-1$
$2 \sin \wedge 2=-1$
$\sin \wedge 2 x=-1 / 2$
$\mathrm{x}=1 /$ sqrt 2
$\mathrm{x}=45$ degrees
Now,
$\sin \wedge 2 x-\cos ^{\wedge} 2 x=-1$
divide by cos
$\tan \mathrm{x}-1=\mathrm{sqrt}(-1)$
$\tan \mathrm{x}=1.618$
$\mathrm{x}=58.28$ degrees
This illustration shows how the universe oscillates.
IF $\mathrm{A}=\mathrm{Pi}$
$0, .618 / \mathrm{Pi}=0.1967$
$\mathrm{dA} / \mathrm{dt}=2 \mathrm{Pi} \mathrm{R}$
$=2 \mathrm{Pi}$
If $\mathrm{Pi}^{*} \mathrm{x}=2 \mathrm{Pi}$
$\mathrm{x}=2$
$e^{\wedge}-1.618=0.198 \sim 2$
$y=e^{\wedge} x$
$d y / d t{ }^{*} d x / d t=1$
$\mathrm{e}^{\wedge} \mathrm{x}^{\star} 1 / \mathrm{x}=1$
$e^{\wedge} x=x$
$\mathrm{e}^{\wedge} \mathrm{x}-\mathrm{x}=0$
$\mathrm{x}-\operatorname{Ln} \mathrm{x}=0$
$\mathrm{x}=\operatorname{Ln} \mathrm{x}$
$1=1 / \mathrm{x}$
$\mathrm{x}=1$
Now,
Integrate
Integral dy/dt* integral dx/dt=integral 1
$y^{*} x=1$
$\mathrm{x}=1, \mathrm{y}=1$ Or, $\mathrm{t}=1, \mathrm{E}=1$
And,
$y=e^{\wedge} x$
$\mathrm{x}=1$
$e^{\wedge} 1.618 * 0.618=e 1$
\sin theta $=$ sqrt c/E
\cos theta $=\mathrm{t} / \mathrm{E}$
$||E||||t|| \cos$ theta=1
$\mathrm{E}=1-\cos$ theta ${ }^{*}$ freq $^{*} \mathrm{t}$
\sin theta $=\cos$ theta $=\mathrm{E}$
$\sin ^{\wedge} \mathrm{t}+\cos ^{\wedge} 2 \mathrm{t}=1$
$G\left(E^{\wedge} 3\right)-\operatorname{Ln}($ freq $)=s$
$\mathrm{F}=\mathrm{Ma}$
$\mathrm{P}=\mathrm{Mv}$
$\mathrm{E}=\mathrm{Mc}^{\wedge}{ }^{\wedge} 2$
Temp $=x e^{\wedge-t}$
The speed of light is the square of the eigen vector for Ets where t is the golden mean function and is equal to its derivative (ie $t^{\wedge} 2-t-$ $1=2 t-1$).

For the Vector space,
$||E||||t|| \cos 60=E^{\star} 1 / t^{*} 1 / 2=1 / 2$
$1=\mathrm{dM} / \mathrm{dt} \cos 60=\mathrm{t} / \mathrm{E}$
$\mathrm{dM} / \mathrm{dt}=1 \& \mathrm{c}=3$
$\mathrm{c}=\mathrm{s} / \mathrm{t}=\mathrm{d} / 0.222$
$\mathrm{d}=0.666=\mathrm{G}=\mathrm{EVIL}$, EVIL, EVIL
Here is why the spped of light $\mathrm{c}=3$
$\mathrm{d}^{\wedge} 2 \mathrm{E} / \mathrm{dt} 2-\mathrm{E}=\mathrm{Ln} \mathrm{t}$ G-E=0
$\mathrm{G}=\mathrm{E}=\mathrm{Mc}^{\wedge} 2 \mathrm{G}=(0.222)(9)\{\mathrm{I}$ had $\mathrm{M}=4.486$. It is wrong. Its the inverse of that]
$\mathrm{G}=2=\mathrm{dM} / \mathrm{dt} \mathrm{E}=\mathrm{dM} / \mathrm{dt}$
$\mathrm{G}=\mathrm{E}^{*} \mathrm{t}$
$\mathrm{sE}=\mathrm{E}{ }^{*} \mathrm{t}$
$\| E| || | t| | \cos 60^{*} E=E^{\star} t=1$
$1 / 2 \mathrm{E}=1$
$\mathrm{E}=2=\mathrm{dM} / \mathrm{dt}$
Integral E dt=Integral dM/dt
$E t=M$
$\mathrm{M}=\mathrm{Et}$
Now $x^{\wedge} 2-x-1=2 x-1$ Function=derivative
$x(x-3)=0$
$x=0, x=3=c$ speed of light
$\mathrm{E}=\mathrm{E}^{\prime}$
$\mathrm{dM} / \mathrm{dt}=\mathrm{E}=\mathrm{E}^{\prime}$
Integral $\mathrm{dM} / \mathrm{dt}=$ Integral $\mathrm{E}^{\prime}=\mathrm{E}$
$\mathrm{E}=\mathrm{M}+\mathrm{C} 1$
$\mathrm{E}=\mathrm{M}+\mathrm{dM} / \mathrm{dt}$ when $\mathrm{c}=3$
Integrate E parabola
$x^{\wedge} 3-2 x^{\wedge} 2 / 2-x=M$
$x^{\wedge} 3-1 / 2 x-1=M / 2$
$6 / 2 x^{\wedge} 2-1=d M / d t$
$3 x^{\wedge} 2-1=d M / d t$
$\mathrm{x}\left(\mathrm{x}^{\wedge} 2-\mathrm{x}-1 / 2\right)-3 / 2=\mathrm{E}$
But, $\mathrm{E}=\mathrm{Mc}^{\wedge} 2$
$c^{\wedge} 2=1$
$\mathrm{c}=1$
$\mathrm{C} 1=2$
$\mathrm{x}\left(\mathrm{x}^{\wedge} 2+3 \mathrm{x}-1 / 2\right)=2+3 / 2=3.5=\mathrm{dM} / \mathrm{dt}+$ MASS GAP
$-2.5 \mathrm{t}=3.5$
$\mathrm{t}=1.4=1+0.40$
$x\left(x^{\wedge} 2-1\right)=2$
$\mathrm{x}^{\wedge} 3-\mathrm{x}-20$
$\mathrm{x}=1=\mathrm{t}$
$\mathrm{M}=0$
$\mathrm{M}+\mathrm{dM} / \mathrm{dt}=\mathrm{E} \& \mathrm{c}=3$
$\mathrm{E}=0+2$
$\mathrm{E}=2$
The $\mathrm{t}=1 /$ sqrt 3 and the $\mathrm{E}=\sin 60 \mathrm{deg}=0.866$

Clairnaut equation

$\mathrm{d}^{\wedge} 2 \mathrm{E} / \mathrm{dt}^{\wedge} \wedge 2-\mathrm{E}=\operatorname{Ln} \mathrm{t}$
DOUBLE INTEGRAL
$\mathrm{E}-2 \mathrm{E} \wedge 3 / 6=\operatorname{Ln} \mathrm{t}$
$\mathrm{E}\left(1-1 / 3 \mathrm{E}^{\wedge} 2\right)=0$
$\mathrm{E}=0, \mathrm{E}=$ sqrt 3
$\mathrm{E}=1 /$ sqrt $3=0.5774$ this hebrew year is 5774 !
$\mathrm{E}=1 / \mathrm{t} \mathrm{t}=1 / \mathrm{E}=1 /$ sqrt $3=0.5774$.

Eigenvector and eigenvalue

$\mathrm{V}^{\wedge} 2=\mathrm{c}$
$|\mathrm{D}|=$ sqrt 3
$\mathrm{V} / \mathrm{c}=|\mathrm{D}|$.
When the eigen vector is squared, the plane is crystalized in twpo eigenvectors separated by 60 degrees
||V||||V||cos $60=3 / 2$
$\mathrm{s}=1.5=3 / 2$
$\mathrm{s}=\mathrm{c} / \mathrm{t}$
$\mathrm{s}=\mathrm{s} / \mathrm{t} / \mathrm{t}$
$\mathrm{st}=\mathrm{s} / \mathrm{t}$
Multiple=fraction
Golden mean
$\mathrm{t}=1, \quad \mathrm{y}^{\star} \mathrm{t}^{\star} \cos (\mathrm{pi} / 3)=\mathrm{Q}, \quad \mathrm{y}=1-\cos (\mathrm{pi} / 3)^{\star}(100 / \mathrm{pi})^{\star} \mathrm{t} / 100, \quad \mathrm{~F}=\mathrm{M}^{\star} \mathrm{a}$, $\mathrm{P}=\mathrm{M}^{*} \mathrm{v}, \mathrm{a}=0.8415, \mathrm{~F}=\mathrm{P}, \mathrm{c}^{\wedge} 2-\mathrm{c}-1=2^{*} \mathrm{c}-1, \mathrm{~s}=1-\mathrm{a}, \mathrm{M}+2=\mathrm{pi}, \mathrm{K}=\mathrm{e}^{\wedge} \mathrm{t} \mathrm{G}=[\log$ (1.618)]/[pi] ${ }^{*} 100$

Time travel is possible at $\mathrm{E}=\mathrm{t}$.
Time stops at $\mathrm{E}=1 / \mathrm{t}$
$\mathrm{E}=\mathrm{sqrt} 3$
$\mathrm{t}=1 /$ sqrt 3
t is the inverse of E, Therefore time stands still this Hebrew Year $5774=1 /$ sqrt 3
$0.5774 / 0.500=1.1548$
$1 / 1.1548=0.866=\sin 60$ degrees
From above:
$\mathrm{ME}=\mathrm{t}$
$\mathrm{t}=$ eigenvector
ME sqrt $3=t$ * sqrt $33 \mathrm{M}=1$
$\mathrm{M}=0.333$
From above:
$\mathrm{dM} / \mathrm{dt}-\mathrm{M}=\mathrm{Pi}$
$2+0.333=\mathrm{Pi}^{*} \mathrm{cuz}$

$$
\begin{aligned}
& 2.333=\operatorname{Pi}(\mathrm{Pi}-\mathrm{e}) \\
& =1.333=\mathrm{s}
\end{aligned}
$$

So $E=$ sqrt $3, t=1 /$ sqrt $3, s=1.333$
$\mathrm{R}=1.9085$
$\mathrm{R} /$ sqrt $3=1.1032 \sim 1 / 9=1 / \mathrm{c}^{\wedge} 2=$ Jesus from above
Expect Jesus this year 5774.

The Ultimate Cusack Universal Equation

$\operatorname{Sin}\left[\mathrm{e}^{\wedge}-\mathrm{t}^{*} \cos 2 \mathrm{Pit}\right]-\operatorname{Sin}\left(\operatorname{Sin}\left[\mathrm{e}^{\wedge}-\mathrm{t}^{*} \cos 2 \mathrm{Pi}{ }^{*} \mathrm{t}\right]\right)=1-\operatorname{Sin} \mathrm{t}=1-\mathrm{E}$
More Simply
$\operatorname{Sin} Y)-\operatorname{Sin}(\operatorname{Sin} Y)=1-\operatorname{Sin} t$
The blue line is the time t; the red line is Energy E, and the green line is the derivative E .

Nostradamus, who saw through time, was born at Dec 21, 1500 AD where red and blue meet and $\mathrm{E}=2$.

So one cycle is 6000 years. That is 2 Pi rads/ 6000 years
$=333 \mathrm{Pi}$ rads $/$ year $=0.060$ degrees $/$ year $=\mathrm{dt} / \mathrm{dt}$
This is the 6 days of Creation.
At 2250 years, $\mathrm{E}=2$ That is 6010 in Hebrew years
Time changes at a constant rate of the derivative of $\cos t=\sin t$.
$x^{\wedge} 2-x-1=2$
$x^{\wedge} 2-x-3=0$
$\mathrm{x}=[1+/-2.0497] / 2=[1+\mathrm{Y}] / 2=\mathrm{t}$
$\mathrm{t}=1.521 .52{ }^{*} 1000=1520$
From above:
$(1+t)^{\wedge} n=1$
$(1+1 / 81)^{\wedge} 11=$
$\operatorname{Ln}(1+0.012345679)$
$=1.227$
$1 / 1.227=81.5 \sim 81$
$\mathrm{y}=\mathrm{y}$ ' when $\mathrm{n}=11$
$\mathrm{x}=\operatorname{Ln} \mathrm{x}$
$1 \mathrm{x} 10^{\wedge} 11 /\left[60^{\star} 60^{*} 365.25\right)^{*} \mathrm{c}=253 \mathrm{LY}$
Period:
$\mathrm{T}=253 \mathrm{LY}$
WHY?
$1 / 81=0.012345679$
OR
$\mathrm{dt} / \mathrm{dt}=1$
$\mathrm{t}+\mathrm{dt} / \mathrm{dt}+\mathrm{d} / \mathrm{dt}$ *dt/dt.......
$1+0.12345679$
$1+0.01+0.001+0.0001 \ldots=1.11111=1 / \mathrm{c}^{\wedge} 2$
$\mathrm{e}^{\wedge} 0+\mathrm{e}^{\wedge} 1+\mathrm{e}^{\wedge} 1 \ldots .=1+7(2.71828)=20.0 / 10=\mathrm{dM} / \mathrm{dt}$
$\left(1 / c^{\wedge} 2\right)^{\wedge} n=3.18=$ freq
freq $=1 / \mathrm{c}^{\wedge} 2=1 / \mathrm{Pi}$
$1 / \mathrm{Pi}=\mathrm{t} / \mathrm{E}=$ freq
Cusack's second constant=CSC=31.8
$\mathrm{E}=\mathrm{t} /\left[10^{*}\right.$ freq] $=\mathrm{Pi}$
So we have $\mathrm{c}=3, \mathrm{dM} / \mathrm{dt}=2.00$ and $\mathrm{t}=1$
1,2,3 Pi
$\mathrm{E}=\mathrm{Mc}^{\wedge} 2$
$\operatorname{Pi}=2\left(c^{\wedge} 2\right)$
$\mathrm{c}=\mathrm{sqrt}(\mathrm{Pi} / 2)=1.2533=$ Jesus!=minimum of energy parabola (golden mean)

You see, it's a crystal.
So when you have $\mathrm{n}=11$ dimensions or variables, you have the eigenvalue $=c=3=$ eigenvector $\wedge 2$. That is when the universe pops into existence and dies a cold death.

Time and the speed of light

$\mathrm{E}=\mathrm{t} /\left[100^{*} 1 / \mathrm{pi}\right]$
$1 / \mathrm{c}^{\wedge} 4=1+7 \mathrm{e}^{\wedge} \mathrm{t}$
$1 / 81=\left(1+7 e^{\wedge}-t\right)=t+d t / d t+d t / d t . \ldots . . d t / d t(1+t)^{\wedge} n=1$
$(1+1 / 81)^{\wedge} 11=1 / E=t$
Cusack's Minimum Time and Energy Equation Yields Speed Of Light
$\left(t+t / c^{\wedge} 4\right)^{\wedge} 11=\left(1+7 e^{\wedge} t\right)=1 / E=t$
Now, $\mathrm{E}=\mathrm{Mc}^{\wedge} 2$
$1 /\left(1+\mathrm{e}^{\wedge} \mathrm{t}\right)=\mathrm{Mc}^{\wedge} 2$
$1 /\left[\left(1+1 / \mathrm{c}^{\wedge} 4\right)^{\wedge} 11\right]=\mathrm{Mc}^{\wedge} 2$
$1 / \mathrm{t}=\mathrm{Mc}^{\wedge} 2$
$\mathrm{E}=1 / \mathrm{t}$
$1-1 / 7=-0.857=E$
6/7=E=Evil Universe $=\sin x$
$1 / 7=\operatorname{Good}=\cos \mathrm{x}$
$1 / 7=$ True/Christ=Jesus
6/7=Evil/Christ=AntiChrist
$1 / 8=1.25=$ Jesus
$\mathrm{t}=1.2533+6 / 7+1 / 7=2.2533$
$1 / \mathrm{t}=0.444=\mathrm{E}=$ Evil
WHY? Because from the Bell Normal Table, $Z=1+50 \%(3 z)=0.8415$
Pi *World Population=Saved 3.14159*7,095,133,356=\# of saved Pi^{\star} World $\mathrm{Pop}=0.2229=\mathrm{M}$
$\mathrm{M} / \mathrm{Pi}=\mathrm{M} / \mathrm{E}$

$\mathrm{E}=\mathrm{Mc}^{\wedge} 2$

World Pop $=\left[\mathrm{E} / \mathrm{mc}^{\wedge} 2\right] / \mathrm{Pi}$
$\mathrm{Pi} / \mathrm{c}^{\wedge} 2 / \mathrm{Pi}$
$=1 / c^{\wedge} 2=$ minimum energy for speed of light.
See above.
$1-1 / 7=-0.857=E$
6/7 $=\mathrm{E}=$ Evil Universe $=\sin \mathrm{x}$
$1 / 7=$ Good $=\cos x$
$1 / 7=$ True/Christ=Jesus
6/7=Evil/Christ=AntiChrist
$1 / 8=1.25=$ Jesus
$\mathrm{t}=1.2533+6 / 7+1 / 7=2.2533$
$1 / \mathrm{t}=0.444=\mathrm{E}=$ Evil
sin=evil
$y=\sin$
$y^{\prime}=\cos$
$y=y^{\prime}$
evil meets good
This is our universe,
sqrt (alpha^2+a^2) $=1 /$ cuz
$\mathrm{c}=3.25$
$\mathrm{c}=13 / 4$
c $|\mathrm{D}|=13$
$1-13=0.86$
$\mathrm{E}-\mathrm{s}=\mathrm{c}|\mathrm{D}|$
And,
sqrt (alpha $\left.\wedge^{\wedge} 2+a^{\wedge} 2\right)=E /$ cuz
$\left(\right.$ Pi-e $\left.{ }^{\wedge} 1\right)$ sqrt (alpha $\left.\wedge 2+a^{\wedge} 2\right)=E$
$\left[\mathrm{E}-\mathrm{e}^{\wedge} 1\right] / \mathrm{E}=1=(1+\mathrm{t})^{\wedge} 11=\mathrm{c}^{\wedge} 4$
$1.2448=1.23$ True
$c^{\wedge}-E=E / M$
when $\mathrm{E}=2, \mathrm{t}=1$, triangle
$\mathrm{Mc}^{\wedge}-\mathrm{E}=\mathrm{E}$
$\mathrm{E}^{\prime}=\mathrm{M}\left(-\mathrm{Ec}^{\wedge}(-\mathrm{E}+1) / 1\right.$
$=-\mathrm{MEc} \mathrm{c}^{\wedge}(1-\mathrm{E})$
$\mathrm{G}=\mathrm{E}^{\prime \prime}=-\mathrm{ME}(1-\mathrm{E}) \mathrm{c}^{\wedge}(1-\mathrm{E})^{\wedge}{ }^{\wedge}$
Oh boy here we go \{you know this is a work of God, not mine. The mistakes are holy mine!\}

$$
\begin{aligned}
& G=E^{\prime \prime}=-\operatorname{MEc}^{\wedge}(1-E)(1-E) \\
& G=-M E(1-E) c^{\wedge}(1-E)^{\wedge} 2
\end{aligned}
$$

$\mathrm{G}=(\mathrm{ME} \wedge 2-\mathrm{ME})\left(\mathrm{c}^{\wedge}(1-\mathrm{E})^{\wedge} 2\right.$	396 X 396							
Take the Ln of both sides, then the derivative:	$4(396)=1586$							
$1 / \mathrm{G}=1 /[\mathrm{ME} \wedge 2-\mathrm{ME}) \mathrm{c}(1-\mathrm{E})^{\wedge} 2$	1586/10000 $=0.1586=\mathrm{s}$							
$1.5(\mathrm{ME} \wedge 2-\mathrm{ME}) \mathrm{c}^{\wedge}(1-\mathrm{E})^{\wedge} 2=1$	1-0.1586=0.8414=sin $1=\cos 1$ Good Meets Evil							
Let $\mathrm{E}=0.8415, \mathrm{c}=3$	$s=2 \mathrm{E}+2 \mathrm{t}$							
$\mathrm{M}=0.4233 \mathrm{M}=\mathrm{cuz}$	Integrate							
$\mathrm{E}=\mathrm{Mc}$? 2	$s^{\wedge} 2 / 2=E \wedge 2+t \wedge 2$							
$1=\mathrm{M}(0.1967)$	$E=t$ from $E=1 / t$							
${ }^{\wedge} \wedge 2=0.1967$ (year I was born!)	$\cos 60$ degrees $=\mathrm{E} \wedge 2+\mathrm{t} \wedge 2$							
$\mathrm{c}=0.444$	$1 / s^{\wedge} 2=2 \mathrm{E} \wedge 2$							
Omega=67 degrees=1.1701 rads	$s^{\wedge} 2=4 \mathrm{E} \wedge 2$							
$\mathrm{F}=\mathrm{Ma}$	$s^{\wedge} 2=\|D\| E \wedge 2$							
$=\mathrm{M}(\mathrm{a}+$ alpha $)$	Now,							
$=\mathrm{M}^{\wedge} 3$	\|	E				t		cos 60 degrees=G
$\mathrm{E}=1 / \mathrm{M}=1 / \mathrm{t}$	$\mathrm{Et}=2 \mathrm{G}$							
$\mathrm{t}=\mathrm{M}=\mathrm{cuz}$	$\mathrm{s}^{\wedge} 2=\|\mathrm{D}\| \mathrm{E} \wedge 2$							
$\mathrm{M}=1 / 7+7 \mathrm{e}^{\wedge} \mathrm{t}$	$=\|\mathrm{D}\|(2 \mathrm{G} / \mathrm{E})^{\wedge} 2$							
$\mathrm{t}=1 / 7+7 \mathrm{e}^{\wedge} \mathrm{t}$	$s^{\wedge} 2=\|\mathrm{D}\| 2 \mathrm{G} \wedge 2 / \mathrm{E} \wedge 2$							
$1=(1 / 7+7 \mathrm{e} \wedge \mathrm{t})$	$\mathrm{E} \wedge 2^{*} \mathrm{~s}^{\wedge} 2=8 \mathrm{G} \wedge 2$							
$1 / 7 \wedge 2=\mathrm{e}^{\wedge} \mathrm{t}$	E^2s^2=8(2/3)^2							
$\mathrm{t}=\operatorname{Ln}(1 / 49)$	$=44.4$							
$\mathrm{t}=\operatorname{Ln}(0.0204)=\operatorname{Ln}(\mathrm{Y} / 10)$	$\mathrm{E} \wedge 2 \mathrm{~s}^{\wedge} 2=3.555$							
$\mathrm{t}=3.89 \sim\|\mathrm{D}\|$	$\mathrm{E} \wedge 2=6.3$							
T Period ~ 257	$\mathrm{E}=2.5111=$ Period T							
$\mathrm{F}=\mathrm{Ma}=\mathrm{M}(\mathrm{a}+\mathrm{alpha}) 2.666=\mathrm{M}(0.84)+\mathrm{M}(1.618)$	$\mathrm{t}=1 / \mathrm{T}=0.3981 \sim 396$							
Posted 41 minutes ago by Paul T E Cusack 0 Add a comment	$\mathrm{E}=\mathrm{t}=0.396$							
- Oct 25	Dimension of property							
Eigen Vector $\wedge x=$ Determinant	Now God and the devil meet at T=E							
$\{$ sqrt 3$\} \wedge \times=4$	That is the hinge point							
$3^{\wedge}(\mathrm{x} / 2)=4$	Q-ED							
$3 \wedge \mathrm{x}=4^{\wedge} 2$	$\mathrm{E}=\mathrm{y}=\mathrm{x} / \mathrm{sin} \mathrm{x}=2 \mathrm{Pi}$							
$3 \wedge x=16$	$\mathrm{C}=3$							
$x \operatorname{Ln} 3=\operatorname{Ln} 16$	$\mathrm{Y}=\mathrm{e}^{\wedge} \mathrm{x}$							
$\mathrm{x}=2.523=$ Period T	$\mathrm{E}=\mathrm{x} / \sin \mathrm{x} \sim \csc (3)=\csc (171.88$ degrees $)=2.232 \times 10 \wedge 74$							
$\mathrm{M}=\left(1 / 7+7 \mathrm{e}^{\wedge} \mathrm{t}\right)$	Vol of ellipsoid=200.86 (10^29)=Y							
$\mathrm{dM} / \mathrm{dt}=2$	$\mathrm{E} / \mathrm{vol}=248 / 200.86=1.23469 \sim 1 / 81$							
$\mathrm{e}^{\wedge} \mathrm{t}=2 / 7$	$1 / 81=\mathrm{e}^{\wedge} 0+\mathrm{e}^{\wedge} 1+\mathrm{e}^{\wedge} 1=\ldots=1 / 7+7 \mathrm{e}^{\wedge} 1=$ Mass (see above).							
$\mathrm{t}=1.2528$	Therefore,							
$\mathrm{t}=-\mathrm{E}$ min	E/vol=Mass							
Oct 26	$\mathrm{E} / \mathrm{Y}=$ Mass							

$\mathrm{Y}=\mathrm{E} /$ Mass

Dampened sin curve.

Conclusion

So these 13 illustrations give a clear picture of how are universe came into being. It had to because the exponential function $y=e^{\wedge} x$ is robust. A question remains if the plots in the above graph prove that there are other universes which work in reverse or in negative energy?

Why are there 17 Questions of Logic?

$(*+1+8)=(1+t)^{\wedge} 8+t=1 / \mathrm{Pi}=31.8 \mathrm{~Hz}$
$17+2^{\wedge} 8+1=1 / \mathrm{Pi}$
$2^{\wedge} 8=256=$ PeriodT
$\mathrm{E}=1 / \mathrm{t}=(1+\mathrm{t})^{\wedge} 8$
$\mathrm{E}=\mathrm{y}=0.86$ (Figure 1)
Here is the equation we've all been waiting for:
$\operatorname{Red}(X, Y)=\cos (t), \sin (t)+1 / 2 \cos [7 t]$
Blue $(\mathrm{X}, \mathrm{Y})=\sin (\mathrm{t}) \quad+1 / 3 \quad \cos [17 \mathrm{t}+\mathrm{Pi} / 3], \quad \sin [17 \mathrm{t}+\mathrm{pi} / 3]$ where $0<=\mathrm{t}<=2 \mathrm{pi}$

The end!
A bit more:
Nov 7
Here is the post to end all posts. (i'm burnt out!)
a / \sin thet $a=a /[b / c]=e^{\wedge} x$
a / \sin theta $=\mathrm{e}^{\wedge} \mathrm{x}$
$\mathrm{x} / \sin \mathrm{x}=\mathrm{e}^{\wedge} \mathrm{X}$
$\mathrm{x}=\operatorname{Ln}(\operatorname{Csc}[\mathrm{x}]$
$\mathrm{x}=\operatorname{Ln} \mathrm{x}=\operatorname{Ln}[\sin \mathrm{x}]$
Let $\mathrm{t}=1, \operatorname{Ln} \mathrm{x}=0$
$\mathrm{x}=\operatorname{Ln}[\sin \mathrm{x}] \mathrm{x}=1.73=$ eigen vector and the side of the $30-60-90$ triangle.

$\operatorname{Red}(X, Y)=\cos (t), \sin (t)+1 / 2 \cos [7 t]$
Blue $(X, Y)=\sin (t)+1 / 3 \cos [17 \mathrm{t}+\mathrm{Pi} / 3], \sin [17 \mathrm{t}+\mathrm{pi} / 3]$ where $0<=\mathrm{t}<=2 \mathrm{pi}$.
Figure 1: Negative energy.

This is where the universal parametric equation $y=y^{\prime}$ and all the physical constants drop out.
$\mathrm{C}=2 \mathrm{Pir}=360-57.29 /[360]=0.8409$
$\sin 57.29$ degrees $=0.8415$
$\mathrm{C}=2$ Pir $\mathrm{R}=0.1338 \sim 0.1334=$ s space
$\sin 57.29=\mathrm{Pi} / \mathrm{x}$
$\mathrm{x}=\mathrm{Pi} / 0.8415=3.73$
$\mathrm{Pi}=\mathrm{C} / \mathrm{d}=0.1334 / \mathrm{d}=\mathrm{s} / \mathrm{d}=\mathrm{cuz} / 10$
$\mathrm{s}=\mathrm{dPi} \mathrm{s}=2 \mathrm{RPi}=\mathrm{c}$
$\mathrm{ds} / \mathrm{dt}=2 \mathrm{Pi}(\mathrm{dR} / \mathrm{dt})$
$\mathrm{ds} / \mathrm{dt}=2 \mathrm{PidR} / \mathrm{dt}$
$\mathrm{ds}=2 \mathrm{Pi} \mathrm{dR}$
$\mathrm{ds} / \mathrm{dr}=2 \mathrm{Pi}=1$ cycle
Now Area of a circle:
$\mathrm{A}=\mathrm{Pi} \mathrm{R}^{\wedge} 2$
$=\mathrm{Pi}^{*}(0.1334)^{\wedge} 2=0.0559$
$1 / \mathrm{A}=17.9$
$A^{\prime}=2 P i R=c$
$\mathrm{R}=0.1334$
When $\mathrm{r}=\mathrm{s}, \mathrm{A}^{\prime}=\sin 1=\mathrm{C} \mathrm{dA} / \mathrm{dt}=\sin 1=\mathrm{v}=\mathrm{a}=0.8415$
$\mathrm{dA} / \mathrm{dt}=\mathrm{v}=\mathrm{a}$
INTEGRAL dA.dt dt=INTEGRAL $\mathrm{v}=$ INTEGRAL a
$\mathrm{A}=\mathrm{s}=\mathrm{v}$
dA.dt a
$\mathrm{A}=\mathrm{dA} / \mathrm{dt}$
$y=y^{\prime}$
The End!
$\mathrm{E}=1 / \mathrm{t}$
$\mathrm{E}=\mathrm{t}$
$\mathrm{E}^{\wedge} 2=1$
$\mathrm{E}=+/-1$
$\mathrm{t}=+/-1$
How do we have negative time and Energy?
Negative time is just time going in reverse in a parallel universe. Negative Enrgy? What is Energy? Its potential or kinetic.

$$
\begin{aligned}
& \text { P.E. }=\mathrm{mgh} \\
& \text {-P.E. }=\mathrm{m}(-\mathrm{g}) \mathrm{h} \\
& \text { K.E. }=1 / 2 \mathrm{mv}^{\wedge} 2 \\
& - \text { K.E. }=1 / 2 \mathrm{~m}(-\mathrm{v}) \\
& -\mathrm{g}=-\mathrm{a}
\end{aligned}
$$

$-v=v$ in th opposite direction. I suspect there is a parallel universe or a mirror image universe.

In a mirror image universe, left is right and right is left. Good is evil and evil is good. Perhaps our universe is a collision of two universes? One cancels out the other? What are we left with? $\sin 1=\cos 1=0.8415$.

I think they call it a chiral universe in chemistry. It may also be a steroimage.

It is a strange thing indeed. I leave it to mathematicians and philosophers to determine.

```
y=1/cuz=1/0.42=1/(0.5*0.8415)
y=2/\operatorname{sin}1
sin 1=2/y
sin 1=sin57.29degrees=hyp/b
sin 1=1/sin 1
Fraction=multiple=1 ] y=x
E=t
Integral integral Dy dx=xy
d2y/dx2=INTEGRAL dy/dx=y
    Let y=y' xy=y
    x=1
    y=y
    E=1/t
    y=1/x
    1=1/x
    x=1
    y=1/x=1/1=1
    E=1, t=1
    y=y'
    d=vit+1/2at^2
    0.2884=vi(1)+1/2(0.8415)(1)^2 vi=0.1394 0.865
    v=sin 1v'=cos 1=0.8415
    1-vi=sin}
    vi=1-sin 1
    v=v'=a=v s=0.1334
    0.2884-0.1334=0.1550
    d-s=1-\operatorname{sin}1=0.8450
```

If we lay the function y over the derivative y^{\prime}, we still get the same physical constants. That is why the universe exists. It had to. As soon as $y=y^{\prime}$, it was stuck in a never ending pattern. To break the patters of a circle, we need god to enter creation.

The length of that line is:
INTEGRAL $\mathrm{t}=, \mathrm{t}=2 \operatorname{Pi} \mathrm{f}(\mathrm{x}, \mathrm{y})$ sqrt $(\mathrm{dx} / \mathrm{dt}))^{\wedge} 2+(\mathrm{dy} / \mathrm{dt})^{\wedge} 2$
INTEGRAL $\sin (7 \mathrm{t})+1 / 3 \cos \{17 \mathrm{t}+\mathrm{Pi} / 3 \mathrm{dt}$
$=-\cos 7 t|+1 / 3 \sin (17 t+\mathrm{Pi} / 3)|$
$=[-\cos 0-\cos 14 \mathrm{Pi}]+1 / 3[\sin 34 \mathrm{Pi}+\mathrm{Pi} / 3]-\sin (\mathrm{PI} / 3)$
$=-1+1+1 / 3 \sin [34.333 \mathrm{Pi}]-\sin (\mathrm{Pi} / 3)$
$=0+1 / 3 *[$ sqrt $3-$ sqrt $3 / 2]$
$=0.866 / 3$
$=2886$
$=2886$
3761-2886=875 Elah become King of Israel
875-2886=2011 Paul Thomas Edward becomes King of Israel and France.

Length of snake $=0.2884$
$\mathrm{A}=\mathrm{Pi} \mathrm{R} \wedge 2$
$\mathrm{A}^{\prime}=2 \mathrm{PiR}$
$\mathrm{r}=1$
$\mathrm{A}^{\prime}=2 \mathrm{Pi}$
$0.2884 / 31.8 \mathrm{~Hz}=90.69=\mathrm{c}^{\wedge} 2$
$90.69^{*} 2 \mathrm{Pi}=$ E.T. $=1.7549=7 / 4(\mathrm{Jesus} / \mathrm{me})$
$\sim 1.73=$ E Sine $\mathrm{t}=1$, we have the 30-60-90 triangle.
Why does the universe model as a rattle snake? The snake is a tubular body that is trying to reach as high as it can to intimidate its enemies. The most stable geometric form in attack position is that of the rattle snake.

So i theorize that our universe is a form that is a series of circles progressing along, pulsating until $\mathrm{A}=\mathrm{A}^{\prime}$, and takes on the form of the stable rattle snake position. That is why our universe is shaped in this way.

```
Length=2884
2884/31.8Hz=90.69s^2=c^2
0.2884 b* }6000\mathrm{ years=1.73=sqrt 3
E=1/t
Et=1
1* sqrt 3=1 * 1/sqrt 3
```

1/srqrt3=0.5445 This Hebrew Year or thereabouts.
The laplace transform for the second order linear differential equation is the famous distance equation in physics.
$d=v i t+1 / 2$ at ${ }^{\prime} 2$
$\mathrm{s}=\mathrm{st}+1 / 2 \mathrm{~s} \mathrm{st}^{\mathrm{t}}$ 2
$s=1 / 2 s^{\prime \prime} \mathrm{t}^{\wedge} 2+s t$
$\mathrm{t}=1$
$s=1 / 2 s^{\prime \prime}+s^{\prime}$
Let $s^{\prime}=e^{\wedge} t$ \& multiply by $\left(e^{\wedge}-t\right)^{\wedge} 2$
$1 / 2 s^{\prime \prime}\left(s^{\prime}\right)^{\wedge} 2+\left(s^{\prime}\right) \wedge 3$
If $y=y^{\prime}=y^{\prime}=e-t$

Then

$$
\left.1 / 2 e^{\wedge}-t\left(e^{\wedge}-t\right)+e^{\wedge}-t\right)^{\wedge} 3
$$

$$
=1 / 2\left(e^{\wedge}-t\right)^{\wedge} 3-\left(e^{\wedge}-t\right)^{\wedge} 3
$$

Now, Divide by $\left.\mathrm{e}^{\wedge}-\mathrm{t}\right)^{\wedge} 2$

$$
\begin{aligned}
& s=-\left(e^{\wedge}-t\right)^{\wedge} 3 \\
& s^{\prime}=3 / 2 \star\left(e^{\wedge}-t\right)^{\wedge} 2 \\
& s^{\prime \prime}=1.5(2) / 2\left(e^{\wedge}-t\right) \\
& =1.5 e^{\wedge}-t
\end{aligned}
$$

Mass Gap=1.5
$s=s^{\prime} t+1 / 2 s^{\prime \prime} t \wedge 2$
$s=1.5\left(e^{\wedge}-=t\right)^{\wedge} 2^{*} t+1 / 2\left(1.5\left(e^{\wedge}-t\right)^{*} t \wedge 2\right.$
$s / t=s^{\prime}=\left(e^{\wedge}-t\right)+0.75\left(e^{\wedge}-t\right) t($ Figure 2)
Length of snake $=0.2884$
$\mathrm{A}=\mathrm{Pi} \mathrm{R}^{\wedge} 2$
$\mathrm{A}^{\prime}=2 \mathrm{PiR}$
$\mathrm{r}=1$
$\mathrm{A}^{\prime}=2 \mathrm{Pi}$
$0.2884 / 31.8 \mathrm{~Hz}=90.69=\mathrm{c}^{\wedge} 2$
$90.69^{*} 2 \mathrm{Pi}=$ E.T. $=1.7549=7 / 4(\mathrm{Jesus} / \mathrm{me})$
$\sim 1.73=\mathrm{E}$ Sine $\mathrm{t}=1$, we have the 30-60-90 triangle.
Why does the universe model as a rattle snake? The snake is a tubular body that is trying to reach as high as it can to intimidate its enemies. The most stable geometric form in attack position is that of the rattle snake.

So itheorize that our universe is a form that is a series of circles progressing along, pulsating until $\mathrm{A}=\mathrm{A}^{\prime}$, and takes on the form of the stable rattle snake position. That is why our universe is shaped in this way.

Length $=2884$
$2884 / 31.8 \mathrm{~Hz}=90.69 \mathrm{~s}^{\wedge} 2=\mathrm{c}^{\wedge} 2$
$0.2884 b^{*} 6000$ years $=1.73=$ sqrt 3
$\mathrm{E}=1 / \mathrm{t}$

Figure 2: The universe model as a rattle snake.
$\mathrm{Et}=1$
1^{\star} sqrt $3=1^{*} 1 /$ sqrt 3
1/srqrt3 $=0.5445$ This Hebrew Year or thereabouts.
The laplace transform for the second order linear differential equation is the famous distance equation in physics.
$d=v i t+1 / 2$ at $\wedge 2$
$\mathrm{s}=\mathrm{st}+1 / 2 \mathrm{~s} \mathrm{~s} \mathrm{t}^{\wedge} 2$
$s=1 / 2 s^{\prime \prime} \mathrm{t}^{\wedge} 2+s t$
$\mathrm{t}=1$
$s=1 / 2 s^{\prime \prime}+s^{\prime}$
Let $s^{\prime}=e^{\wedge} t$ \& multiply by $\left(e^{\wedge}-t\right)^{\wedge} 2$
$1 / 2 \mathrm{~s}^{\prime \prime}\left(\mathrm{s}^{\prime}\right) \wedge 2+\left(\mathrm{s}^{\prime}\right)^{\wedge} 3$
If $y=y^{\prime}=y^{\prime}=e-t$
Then
$\left.1 / 2 e^{\wedge}-t\left(e^{\wedge}-t\right)+e^{\wedge}-t\right)^{\wedge} 3$
$=1 / 2\left(e^{\wedge}-t\right)^{\wedge} 3-\left(e^{\wedge}-t\right)^{\wedge} 3$
Now, Divide by $\left.e^{\wedge}-t\right)^{\wedge} 2$
$s=-\left(e^{\wedge}-t\right)^{\wedge} 3$
$s^{\prime}=3 / 2 *\left(e^{\wedge}-t\right)^{\wedge} 2$
$s^{\prime \prime}=1.5(2) / 2\left(e^{\wedge}-t\right)$
$=1.5 \mathrm{e}^{\wedge}-\mathrm{t}$
Mass Gap=1.5
$s=s^{\prime} t+1 / 2 s^{\prime \prime} t^{\wedge} 2$
$s=1.5\left(e^{\wedge}-=t\right) \wedge 2 * t+1 / 2\left(1.5\left(e^{\wedge}-t\right)^{*} t \wedge 2\right.$
$s / t=s^{\prime}=\left(e^{\wedge}-t\right)+0.75\left(e^{\wedge}-t\right) t$
Let $\mathrm{t}=1$
$v=e^{\wedge}-t+0.75\left(e^{\wedge}-t\right)(1)$
$\mathrm{v}=1.75\left(\mathrm{e}^{\wedge}-\mathrm{t}\right)$
1.75~eigenvector
$d=e^{\wedge}-t$
$\mathrm{v}=\mathrm{d} / \mathrm{t}$
$\left.1.75\left(e^{\wedge}-t\right)=e^{\wedge}-t\right) /(t)$
$1.75=\mathrm{t}$
$=$ eigenvector for $\{1,0,0 ; 0,1,0 ; 0,0,1\}$
Time is the eigenvector! Saturday, 28 February 2015
$\mathrm{F}=\mathrm{Ma}$
$\mathrm{dE} 2 / \mathrm{dt} 2=\mathrm{G}=\mathrm{dF} / \mathrm{dt}$
$\mathrm{dE} 2 / \mathrm{dt} 2-\mathrm{dF} / \mathrm{dt}=0$
$\mathrm{dE} 2 / \mathrm{dt} 2-\mathrm{dF} / \mathrm{dt}=0$
$\mathrm{G}-\mathrm{dF} / \mathrm{dt}=0$

Displayed values for x min, x max , ymin, ymax, zmin, zmax are approximate.
Choose a color for your curve: To change number of points (must be an integer betpeen 100 and 300), type in the new number and olick the POINTS button.

Note: Requires at least 800 MHz especially with a higher number of points.

Enter formulas for x, y, and z in terms of a parameter t. Use ordinary syntax. F or example:
$t^{*} \sin \left(t^{\wedge} 2+1\right)-t / 8$

SYWTAX:

Mouse over the SYNTAX button for rules and instructions.

Enter the range for t . (Numerical entries and multiples of pi, e.g. 0.5^{*} pi.)

$\begin{aligned} \text { tmin } & =0 \\ \operatorname{tmax} & =1\end{aligned}$
Click button to turn scaling constrained on or oft:

ON/OFF
After you enter or change any of the
Atter you enter or change any of the
above seltings, click GRAPH button:
GRAPH

Problems
Click a problem to display parametric formulas in the x, y, z boxes. Try to imagine the appearance of the corresponding curve. Click GRAPH to display the curve.
Problem 1 Problem 3 Problem 5 Problem 2 Problem 4 Problem 6

Figure 3: Speed of light

Displayed values for x min, x max, y min, y max, $z m i n, z m a x$ are approximate.
Choose a color for your curve: \square
To change number of points
(must be an integer bebween 100 and 300), type in the

POINTS button

Enter formulas for x, y, and z in terms of a parameter t. Use ordinary syntax. For example:
$t^{*} \sin \left(t^{\wedge} 2+1\right)-t / 8$
Mouse over the SYNT AX button for rules and instructions.

Enter the range for t. (Numerical entries and multiples of pi, e.g. 0.5^{*} pi.)

Click arroms to rotate graph.

Note: Requires at least 800 MHz especially with a higher number of points.

Problems

Click a problem to display parametric formulas in the x, y, z boxes. Try to imagine the appearance of the corresponding curve. Click GRAPH to display the curve. Problern 1 Problem 3 Problem 5 Problem 2 Problem 4 Problem 6

Figure 4: Speed of light.

$\mathrm{G}=\mathrm{dF} / \mathrm{dt}$

Since $\mathrm{F}=$ Sin theta
$\mathrm{G}=$ Sin theta
$6.67=\sin$ theta

Theta $=41.8$ degrees $=0.7302$ radians
Sqrt Theta $=0.8545=\mathrm{E}$
$1 / G=\operatorname{Sin} E$
!/G=1.5 (Mass Gap)
$1 / G^{*} \mathrm{G}=1.0000$
Here is why c=2.9979~3
R Vector $=S Q R T \quad\left\{3 \wedge 2+24^{\wedge} 2+66 \wedge 2\right]=6 ., 64981$
Resistance $\mathrm{R}=0.4233=\mathrm{cuz}$
$\mathrm{E}=0.8414=\operatorname{Sin} 1=\operatorname{Cos} 1$
$\mathrm{V}=\mathrm{iR}$
$0.8415 / 0.4233=198.8$
66.4981/198.8=2.98949~3~c=speed of light (Figures 3 and 4).

References

1. Cusack P (2012) Astrotheology, The Missing Link, Book 1, LULU USA.
2. Cusack P (2013) Astrotheology, The Missing Link, Book 2, LULU USA.
3. Cusack P (2014) Astrotheology, The Missing Link, Book 3, LULU USA.
4. Cusack P (2015) The Universe Inside and Out. LULU USA.
5. Cusack P (2015) The Crystal The End of Physics. LULU USA.
6. Cusack P (2012) Astrotheology 1 st Edition, LULU USA.

[^0]: *Corresponding author: Paul TEC, BScE, DULE, 1641 Sandy Point Rd Saint John, NB Canada, E2K 5E8, Canada, Tel: (506) 214-3313; E-mail St-michael@hotmail.com
 Received January 17, 2017; Accepted March 23, 2017; Published March 29 2017

 Citation: Paul TEC (2017) The Universal Parametric Equation. J Generalized Lie Theory Appl 11: 261. doi:10.4172/1736-4337.1000261
 Copyright: © 2017 Paul TEC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

