The Use of Intrauterine Devices (IUDs) in Adolescents and Nulliparous Women: A Systematic Review

Sarah A Smith*
Undergraduate Program Director, South University, Columbia, US

Abstract

Introduction: High rates of unintended adolescent pregnancy in the United States (US) suggests the need for a highly effective, long acting, reversible contraception method that is safe for nulliparous women and adolescents. The American College of Obstetricians and Gynecologists (ACOG), American Academy of Pediatrics (AAP), and World Health Organization (WHO) have all released statements supporting the use of intrauterine devices (IUDs) as a safe and acceptable means of long acting, reversible contraception for women and adolescents. Despite this support, some health care providers are still resistant to recommend IUDs for use with adolescents and nulliparous women.

Purpose: The purpose of this systematic literature review is to summarize and critically appraise the evidence surrounding the use of IUDs with nulliparous women and adolescents.

Methods: A systematic, retrospective review of the literature pertaining to IUD use in adolescents, young women, and nulliparous women was performed.

Results: The final sample consisted of 12 studies with publication dates from 1996-2014. Overall, IUD use in nulliparous and adolescents was not related to increased rates of uterine perforation, pregnancy, pelvic infections, or infertility. Age and parity was found in some studies to be associated with increased pain with insertion, IUD expulsion, pain after insertion, bleeding, and decreased IUD continuation rates. However, the association between age and parity and these potential IUD related side effects were not significant enough to discredit the use of these devices.

Discussion: It is apparent that the use of IUDs with adolescents and nulliparous women is an effective, safe long-acting reversible contraceptive (LARC) option. Health care providers need to educate their adolescents and nulliparous women patients on the advantages of utilizing IUDs. Further research is warranted on potential prophylactic and symptomatic treatment which may decrease side effects associated with the use of IUDs with adolescents and nulliparous women.

Keywords: Intrauterine devices; Nulliparous women; Adolescents; Long-acting reversible contraceptive (LARC)

Introduction

Primary care providers play an important role in preventing teenage pregnancy. It is believed that primary care efforts focused on educating patients to help prevent unplanned pregnancy has been a contributor to the continued reduction in the annual teenage birth rates in the United States (US) over the past several years. However, despite the decline in the rates, the problem is far from resolved [1]. In 2013, 26.6 babies were born to every 1,000 females under the age of 20 in the US [2]. Of these 750,000 teenage pregnancies, 82% were unplanned.3 Adolescents have the highest rates of unplanned pregnancies compared to any other age group, 82% compared to 49% in women over the age of 18.3 The rate of unplanned pregnancies in adolescents under the age of 15 years of age is even higher at 98% [3].

The concern surrounding adolescent pregnancy is based on the negative relationship found between the age of the mother and the life of the infant. Adolescent pregnancies have been found to result in higher rates of low birth weight infants, still births, preterm labor, mortality within the first year of life, and continued behavioral concerns throughout life for the child [4]. The negative effects of adolescent pregnancy also extends to the mother who faces increased rates of high school dropout, decreased socioeconomic status, and an increased rates of subsequent teenage pregnancy [4]. Adolescent pregnancy also creates an enormous financial burden on society due to increased dependence on public assistance programs and greater public health costs [4].

Despite the high rate of unplanned pregnancies, it is reported that 91% of adolescent mothers did utilize some form of birth control.3 According to American College of Obstetricians and Gynecologists (ACOG) the discrepancy between the number of adolescents who use birth control and the number who become pregnant can be attributed to inconsistent use of contraception methods and selection of methods with high failure rates (primarily due to inconsistent use) such as condoms, oral contraceptives, and coitus interruptus (withdrawal) [5]. In 2007, the ACOG released a committee opinion statement supporting the use of intrauterine devices (IUDs) as a safe and acceptable long-acting reversible contraceptive (LARC) method for women and adolescents [6]. In 2009, the Department of Reproductive Health, World Health Organization released the Medical Eligibility Criteria for Contraceptive Use (4th ed.) which supported the use of IUDs in adolescents [7]. In October of 2014, the American Academy of Pediatrics (AAP) released a policy statement encouraging pediatricians to counsel adolescents on contraception by introducing the most effective method, LARCs first [8]. Despite support for the use of IUDs by adolescents by ACOG, the WHO, and the AAP; a study conducted by Tyler et al. in 2012 found that 30% of healthcare providers surveyed still had misconceptions and reservations about the safety of prescribing IUDs for adolescents and nulliparous women [9].
Purpose

The purpose of this systematic literature review is to summarize and critically appraise the evidence surrounding the use of IUDs by adolescents and nulliparous women.

Background

LARCs effectiveness

Long-acting reversible contraception (LARC) methods, which are over 99% effective, are believed to be a viable option to effectively reduce the number of teenage pregnancies in the US [10]. LARCs include contraceptive injections (progestin-only Depot medroxyprogesterone acetate), subdermal progestin contraceptive implants (Implanon and Nexplanon), intrauterine devices (IUDs), and intrauterine systems (IUSs) [levonorgestrel releasing (Mirena and Skyla) and copper (ParaGard)] [8,10]. The increased effectiveness of LARCs when compared to short-acting reversible contraception (SARC) methods (condoms, oral contraceptives, Nuva Ring, Patch, cervical caps, and diaphragms) is attributed to the minimal effort needed on the woman’s part to obtain perfect compliance [11].

Length of contraceptive coverage

The length of time LARCs are effective depends on the method being used. The progestin-only contraception injection has the shortest length of contraceptive coverage with administration needed every 11-15 weeks [8]. The repeated need for administration with this method should be considered when being used with adolescents due to the high frequency of missed and canceled visits with this population [8]. Subdermal progestin contraceptive implants are inserted into the medial aspect of the upper arm and may remain in place for up to 3 years [12]. The use of subdermal progestin contraceptive implants in adolescents is supported by ACOG [13]. However with the length of contraceptive coverage with an implant being only 3 years, this may be less time than is needed to cover most adolescents’ contraceptive needs from the “age-of-sexual initiation to age-of-readiness for parenthood without an unintended pregnancy” as can be accomplished with IUDs (p.s35) [11]. The length of contraceptive coverage with an IUD varies from 3–10 depending on the type of IUD.8 The potential to have 10 years of contraceptive coverage with an IUD makes it ideal coverage to help adolescents reach the “age-of-readiness for parenthood” (p.s35) [11].

Rates of adolescent IUD contraception use

Despite the high efficiency, lack of risk of user error, and long length of contraception coverage, IUDs are not highly utilized by adolescents in the US. According to CDC’s Teenagers in the United States: Sexual Activity, Contraceptive Use, and Childbearing, 2006–2010 National Survey of Family Growth, the most frequently used contraceptive methods from 2006-2010 were condoms (96%), withdrawal (57%), oral contraceptives (56%), contraception injections (20%), and the contraceptive ring (5.2%) [14]. This survey was conducted during the period following the release of ACOG’s 2007 committee opinion statement supporting the use of IUDs for adolescents, yet the survey did not collect data on the rates of IUD use with this population. Finner, Jerman, and Kavanaugh (2012) reported on US trends in LARC and IUD use [15]. The researchers reported that IUD use among adolescents (15–19 years of age) increased from 1.5% to 4.5% from 2007 to 2009. These numbers are low considering ACOG, WHO, and AAP recommend IUDs as the first line contraceptives for adolescents [6-8].

Nulliparous women, adolescents, and IUDs

The term ‘nulliparous’ refers to women who has never given birth [16]. For the purpose of this paper the term adolescent is used to refer to females under the age of 21 years of age. Much provider hesitation on the use of IUDs with the adolescent population stems from the fact that many are nulliparous. Historically, there has been concern regarding the use of IUDs with nulliparous women due to the need for the IUD to fit through the cervical os, the need for the IUD to remain within the uterine cavity (which may be smaller in adolescents and nulliparous women), the risks of pelvic inflammatory disease, (PID) and infertility risks [17]. The concerns with the use of IUDs with adolescents is associated with the fact that most adolescents also meet the criteria of being a nulliparous woman. Due to the common base of the concern regarding the use of IUDs with adolescents and nulliparous women, for the purpose of this paper research articles which address either population were considered for inclusion in the literature review.

Methods

A systematic review of the literature pertaining to IUD use in adolescents, young women, and nulliparous women was performed. The online search strategy included a review of EBSCOhost, Gale PowerSearch, ProQuest, PubMed Medline, Google Scholar, and reference lists from relevant studies. Search terms included: long-acting reversible contraception, intrauterine devices, intrauterine systems, teenagers, adolescents, and nulliparous women. For the purpose of this systematic review, IUSs were grouped together with IUDs.

In 2009, a systematic review of IUD use with adolescents was performed by Deans and Grimes [18]. The six studies included in the review were dated from 1975-1993.18 Based on the dates of the studies in the Deans and Grimes review, a date range of studies no older than 1993 was selected for inclusion in this review.

Sample

The sample size was determined based on the availability of studies meeting the specific inclusion and exclusion criteria discussed below.

- Inclusion criteria

Empirical research studies included in this systematic review of the literature included those which investigated the use of IUDs and IUSs with nulliparous women, adolescents, or young women. Studies which investigated the use of IUDs with participants of all ages and parity, but also specifically broke down results to show findings for adolescent and nulliparous women were included in the review.

- Exclusion criteria

Studies focusing on IUD use, but not with nulliparous women, adolescents, or young women were excluded from the review. Systematic reviews, position statements, editorials, and other non-empirical articles were also excluded.

Results

The final sample consisted of 12 studies which investigated the use of intrauterine contraception with adolescents, young women, and/ or nulliparous women (Table 1). The dates of the studies ranged from 1996-2014. Based on the Rating System for the Hierarchy of Evidence, [19] two studies were level II randomized control studies, [20,21] one was a level III well-designed control trial without randomization, [22] seven were level IV well designed cohort or case-control studies, [23–29] and two were level VI single descriptive studies [30,31]. Sample sizes ranged from 2025 to 2,138. [29]. (Table 1)
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Nulliparous/Adolescent</th>
<th>Sample Size</th>
<th>Methodology</th>
<th>IUD Type</th>
<th>Significant Findings</th>
<th>IUD Safe for Nulliparous or Adolescents</th>
<th>Length of Study f/u</th>
</tr>
</thead>
<tbody>
<tr>
<td>To compare the use of IUDs in Nulliparous and Parous women</td>
<td>Nulliparous vs. Parous (ages 16-34)</td>
<td>Nulliparous N = 525 & Parous N = 2770</td>
<td>Non-randomized cohort study</td>
<td>MLCU-250 IUDs (Nulliparous), TCU-200, 7Cu-200, & Nova-T IUDs (Parous women)</td>
<td>Use of IUD in nulliparous women is of equal benefit as that of parous women. There was no greater risk for complications such as PID and infertility.</td>
<td>Yes</td>
<td>4 years</td>
</tr>
<tr>
<td>To determine the risk of infertility among nulliparous women using IUDs</td>
<td>Nulliparous (590/1985 or 31% of participants were under 24 years of age)</td>
<td>N = 1895, infertile n=1311, pregnant (control) n=584</td>
<td>Case control study</td>
<td>Any IUD using copper</td>
<td>Copper IUD is not associated with increased risk of infertility in nulliparous women, but a hx of Chlamydia is</td>
<td>Yes</td>
<td>N/A crosssectional - retrospective</td>
</tr>
<tr>
<td>To evaluate the clinical performance of three IUDs (TCU 380 NuL, MLCU 375 sl, & TCU 380 A) in Nulliparous mexican women</td>
<td>Nulliparous (median ages for three groups 22.4, 22.6, & 23.2)</td>
<td>Nulliparous N = 1170 (each group had 390)</td>
<td>Single-blind, comparative randomized study</td>
<td>Tcu 380 A (Copper / Control), Tcu 380 NuL (copper but smaller / experimental for nulliparous), ML Cu 375 sl (Hosreshoe shaped copperperimental for nulliparous)</td>
<td>Insertion of smaller IUDs (TCU 380 NuL & MLCu 375 sl) less difficulty than the larger TCU 380 A</td>
<td>Yes</td>
<td>1 year</td>
</tr>
<tr>
<td>To compare the clinical performance of LNG IUS with Oral Contraceptives (OC) in Nulliparous women</td>
<td>Nulliparous (age 18-25)</td>
<td>Nulliparous = 153, (IUS group n=94, Oral Contraceptives n=99)</td>
<td>Randomized comparative study</td>
<td>Levonorgestrel-releasing (LNG) IUS vs OC</td>
<td>LNG IUS was as good as with OC</td>
<td>Yes</td>
<td>1 year</td>
</tr>
<tr>
<td>To investigate the acceptability of LNG-IUS for you nulliparous Chinese females post surgical abortion</td>
<td>Nulliparous (age 18-25)</td>
<td>Nulliparous N = 20</td>
<td>Prospective observational study</td>
<td>Levonorgestrel-releasing (LNG) IUS</td>
<td>LNG-IUS is an acceptable method of contraception for post abortion, young, nulliparous women. (Limitations: small sample size and low participant retention rate at 1 year f/u)</td>
<td>Yes</td>
<td>1 year (only 45% f/u at 1 year)</td>
</tr>
<tr>
<td>To determine the feasibility of a larger study investigating the experience of nulliparous women with IUDs and IUSs</td>
<td>Nulliparous (55% of participants were 24 years of age or younger)</td>
<td>Nulliparous N = 113 (104 with IUD & 9 with IUS)</td>
<td>Prospective pilot study</td>
<td>Levonorgestrel-releasing (LNG) IUS, Nova T Cu 380, T Safe Cu 380 A, GyneFix, & Multiload Cu 375</td>
<td>IUDs/IUSs are a well tolerated, safe option for nulliparous women with high satisfaction and continuation rates.</td>
<td>Yes</td>
<td>1 year</td>
</tr>
<tr>
<td>To investigate the indications for insertion and removal of the LNG IUD in New Zealand adolescents.</td>
<td>Adolescents (ages 11-19)</td>
<td>Adolescent N = 133 (completed study)</td>
<td>Prospective observational cohort study</td>
<td>Levonorgestrel-containing IUD</td>
<td>LNG IUD was most frequently started in adolescents due to 85% continuation rate in adolescents with LNG IUD</td>
<td>Yes</td>
<td>1 year</td>
</tr>
<tr>
<td>To evaluate the rate and type of complications associated with the Copper T 380A IUD between adult women and adolescent women in Egypt</td>
<td>Adolescents (defined as 13-19 years of age) compared to adults (20 and older)</td>
<td>Total N = 852, Adolescents n = 281 and Adult women n = 571</td>
<td>Prospective comparative study</td>
<td>Copper T 380A IUD</td>
<td>The rates of pain, bleeding, displacement, expulsion, and early removal of IUDs were significantly higher in adolescent women</td>
<td>Yes with close monitoring</td>
<td>6 months</td>
</tr>
<tr>
<td>To investigate the use of IUDs, including side effects and compliance, in adolescents and young women</td>
<td>Adolescents and Young Women (16-22 years of age)</td>
<td>Adolescents N = 224, (Under 20 and nulliparous n=114)</td>
<td>Descriptive, retrospective chart review</td>
<td>Copper (13% of participants) and Levonorgestrel-containing (67 % of participants)IUDs</td>
<td>IUDs are a reliable method of contraception in young women and adolescents. There were fewer removals of the LNG devices due to side effects & there were no pregnancies with the LNG. Findings were not significantly different enough to recommend one device over the other.</td>
<td>Yes</td>
<td>3 years</td>
</tr>
<tr>
<td>To investigate the use of LNG IUS in nulliparous women</td>
<td>Nulliparous (50% were also adolescents)</td>
<td>Nulliparous N = 249 (Under 16 and nulliparous n=114)</td>
<td>Non-interventional cohort study</td>
<td>Levonorgestrel-containing IUS (Mirena)</td>
<td>Although there was pain with insertion, it was effective contraception with high satisfaction and continuation rates (Note - results do not clearly show results of women under 20 vs other age groups for each side effect. Also high lack of follow up with participants beyond 2nd f/u)</td>
<td>Yes</td>
<td>3 follow up (f/u) sessions, 3rd f/u ranged from 30-124 weeks post insertion) However, only 62% were available for follow the 3rd f/u</td>
</tr>
</tbody>
</table>
To investigate the use of IUDs in adolescents and young women
Adolescents and Young Women (<21 years of age)
N=233, Under 18 years n=69,
18-21 n=164
(Nulliparous n=71, Parous n=164)
Retrospective descriptive study
CuT380A IUD (Paraguard), and
Levonorgestrel-containing IUS (Mirena)
Age was not significant in expulsion while Nulliparous status was, for early
termination age was significant while nulliparous status was not. However
rates of continuation were still longer than other hormonal contraceptives
(oral).
Yes 8 years

To analyze the effects of age, parity, and IUD type on rates of complications.
Nulliparous & Adolescent
N=2138, Adolescent n= 249, Nulliparous n= 273
Chart Review
Levonorgestrel-releasing, Copper
No difference in IUD use in adolescents, nulliparous, and parous adults
Yes 1 year

<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Pain with insertion</th>
<th>Perforation</th>
<th>Expulsion</th>
<th>Pregnancy</th>
<th>Bleeding</th>
<th>Pain (after insertion)</th>
<th>PID or Pelvic Infection</th>
<th>Infertility</th>
<th>Continuation Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>Duenas, et al.</td>
<td>XX</td>
<td>None reported</td>
<td>25/525 or 4% of nulliparous women</td>
<td>18/525 or 3% of nulliparous women had IUD removed due to becoming pregnant</td>
<td>12/525 or 2% of nulliparous women d/c IUD early due to bleeding/pain</td>
<td>12/525 or 2% of nulliparous women d/c IUD early due to bleeding/pain</td>
<td>None reported</td>
<td>None reported</td>
<td>Similar length of use reported between nulliparous and parous women</td>
</tr>
<tr>
<td>2001</td>
<td>Hubacher, et al.</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>Similar length of use reported between nulliparous and parous women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Otero-Flores, et al.</td>
<td>XX</td>
<td>None reported</td>
<td>Sig less (p<0.001) with smaller IUDs (TCU 380 Nul & MLCu 375 sl)</td>
<td>TCU 380 A - 4/390 pregnancies (1%), TCU380 Nul - 2/390 pregnancies (0.5%)</td>
<td>Sig less (p<0.001) with with smaller IUDs (TCU 380 Nul & MLCu 375 sl)</td>
<td>Sig less (p<0.001) with with smaller IUDs (TCU 380 Nul & MLCu 375 sl)</td>
<td>None reported</td>
<td>XX</td>
<td>Sig longer use (p=0.001) with with smaller IUDs (TCU 380 Nul & MLCu 375 sl)</td>
</tr>
<tr>
<td>2004</td>
<td>Suhonen, et al.</td>
<td>XX</td>
<td>64.9% nulliparous young women reported mild to moderate pain, 21.3% reported severe pain with insertion</td>
<td>None reported</td>
<td>1/94 <1% expulsion</td>
<td>2/94 or 2% terminated IUD due to bleeding</td>
<td>6/94 or 6% terminated IUD due to pain</td>
<td>None reported</td>
<td>XX</td>
<td>At 12 months 19 LNG IUS vs. 27 OC women terminated use of contraceptive</td>
</tr>
<tr>
<td>2004</td>
<td>Li, et al</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>Rates of irregular bleeding decreased as length of time with IUD increased 50% (at 6weeks), 33% (3 months), 8% (6 months)</td>
<td>1 participant requested removal due to pain</td>
<td>1/13 had pelvic infection at 6 months (did not clarify if PID)</td>
<td>XX</td>
<td>4/18 requested removal. However at 1 year follow up the 9 subjects which were able to be contacted reported 100% acceptability of IUD</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
<td>Study Design</td>
<td>% Nulliparous Women</td>
<td>Expulsions</td>
<td>Pregnancy</td>
<td>Pain</td>
<td>Infection</td>
<td>PID</td>
<td>Device Removal</td>
<td>Findings</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>---------------------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2008</td>
<td>Brockmeyer, et al.</td>
<td>33% of nulliparous women said the procedure was "less painful" than expected, 45% found it "expected level of pain," and 19% found the procedure to be "more painful than expected"</td>
<td>None reported</td>
<td>7% had expulsions at 1 year</td>
<td>None reported</td>
<td>47% had heavy periods that they could cope with, 5% had heavy bleeding that they could not cope with</td>
<td>59% of women reported pain at 1 year</td>
<td>1% had suspected PID</td>
<td>XX</td>
<td>At 1 year 44% of had device removed (mostly due to pain & bleeding)</td>
</tr>
<tr>
<td>2009</td>
<td>Paterson, et al.</td>
<td>None reported</td>
<td>11 out of 133 expulsions or 8%. Authors note this is consistent with rates reported by Mirena for the general user</td>
<td>None reported</td>
<td>XX</td>
<td>1/133 PID <1%</td>
<td>XX</td>
<td>1 year continuation rate of 85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Rasheed, et al.</td>
<td>XX</td>
<td>XX</td>
<td>Significantly higher rates of expulsions and displacement in adolescents compared to adults</td>
<td>None reported</td>
<td>At 3 months, significantly higher rates of bleeding in adolescents (55) compared to adults (37) p<0.05. After 3 months no longer a statistically significant difference</td>
<td>At 3 months, significantly higher rates of pain in adolescents (42) compared to adults (21) p<0.05. After 3 months no longer a statistically significant difference</td>
<td>2/244 or 0.8% PID (adolescent group). None in adults.</td>
<td>XX</td>
<td>Significantly higher rates of early termination rates in adolescents (105) compared to adults (60) (p<0.05)</td>
</tr>
<tr>
<td>2011</td>
<td>Lara-Torre, et al.</td>
<td>XX</td>
<td>XX</td>
<td>3% expulsions</td>
<td>2% pregnancy with copper IUD & none with LNG</td>
<td>32% experienced bleeding</td>
<td>28% experienced pain</td>
<td>9% infections but no PID</td>
<td>XX</td>
<td>Fewer removals due to side effects in the LNG group (22%) compared to the Copper device group (41.7%)</td>
</tr>
<tr>
<td>2011</td>
<td>Marions, et al.</td>
<td>In the women under the age of 20, 19% reported severe pain and 71% reported moderate pain with insertion</td>
<td>None reported</td>
<td>2nd f/u (12-16 weeks) 4/224 or 1.8% expulsions</td>
<td>None reported</td>
<td>XX</td>
<td>1st f/u (2-5 weeks) 6 women had signs of infection (no reported PID)</td>
<td>XX</td>
<td>84% continuation rate at 2nd f/u (12-16 weeks)</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Alton, et al.</td>
<td>10/233 were placed under anesthesia, no reports on patient pain reporting</td>
<td>None reported</td>
<td>Expulsion risk was greater in nulliparous women (p=0.017), age was not found to be significant (p=0.22)</td>
<td>None reported</td>
<td>XX</td>
<td>7.7% infection rate. Nulliparous (RR=5.60) was significantly higher (p<0.001). Prior STI (RR=5.48) significant (p<0.001). Age not significant (p=0.11).</td>
<td>XX</td>
<td>< 18 yo increased rates of early termination. Nulliparous status was not found to be significant</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Aoun, et al.</td>
<td>XX</td>
<td>3/2,138 or 0.14% perforation rate over all (Note: all perforations occurred in the 20-24 group)</td>
<td>6% expulsion rate, no diff in rates between nulliparous and parous women. Higher in copper IUD users vs LNG</td>
<td>1% pregnancy rate, no diff in rates between nulliparous and parous women. Higher in copper IUD users vs LNG</td>
<td>30% reported abnormal bleeding</td>
<td>Over all 29% reported pain. Ages 13-19 (38%), more likely to report having pain compared to 20-24 (32%), and 25-35 (32%) p<0.001</td>
<td>Overall findings 23% vaginitis, 6% cervicitis, and 2% PID</td>
<td>XX</td>
<td>Parity not significant. Termination rates adolescents > women over 20</td>
</tr>
</tbody>
</table>
After three months there was no longer a statistical difference in the proportion of adolescents (56.9% at 1 month and 28.4% at 3 months) compared to adults (23.9% at 1 month and 25.1% at 3 months) [22]. At the 6 month follow up, there was no longer a statistical difference (p=0.22) [31] Rasheed, et al. (2012), reported the expulsion risk was greater in nulliparous women (p=0.017), while age was not found to be significant (p=0.02) [23] Aoun, et al. (2014), found no difference in expulsion rates between women based on parity, however did report higher expulsion rates with copper IUDs (2% at 1 month, 6% at 12 months, and 8% at 37 months) compared to LNG IUDs (1% at 1 month, 3% at 12 months, and 5% at 37 months).29 Otero-Flores, Guerrero-Carreño, and Vázquez-Estrada (2003), reported smaller IUDs TCu 380 Nul (1.8%) and ML Cu 375 sl (1.8%) which were trialed with nulliparous women had significantly lower (p<0.001) rates of expulsion when compared to TCu 380A (3.3%). [21]

Pregnancy

Four of the twelve studies reported the occurrence of pregnancies despite IUD use [21,23,29,30]. Pregnancy rates with IUD use ranged from 0.5%21 to 3.2%23 Aoun, et al. (2014), reported a 1% pregnancy rate with no significant difference between nulliparous and parous women [29]. Lara-Torre, Spotwood, Correia, and Weiss (2011), described pregnancy as more frequent (2%) in nulliparous adolescents with copper IUDs compared to nulliparous adolescents with LNG IUDs (0 occurrences) [30].

Bleeding

The majority of the studies, eight out of twelve, reported finding heavy and / or irregular bleeding to be a common side effect of IUD use with the nulliparous and adolescent population [20,23-25,26,29-30]. Despite these findings, based on the studies in this sample alone, it is difficult to determine if the rates of heavy and / or irregular bleeding are related to age and parity, or merely the use of an IUD in general. Aoun, et al. (2014), investigated the effects of age on IUD use and complications [29]. The study revealed that 30% of the total participants experienced abnormal bleeding. The frequency of abnormal bleeding between participants aged 13-19 (35%), 20-24 (30%), and 25-35 (29%), showed a decreasing trend in bleeding as age increased, which was not found to be statistically significant (p = 0.20) [29] Rasheed and Abdelmonem (2011), did identify a statistically significant (p=0.034 at 1 month and p=0.030 at 3 months) increase in bleeding among adolescents (35.2% at 1 month and 37.2% at 3 months) compared to adults (23.9% at 1 month and 25.1% at 3 months) [22]. At the 6 month follow up, there was no longer a statistical difference (p=0.230) in the rates of bleeding between adolescents (54.2%) and adults (45.9%) [22].

Pain after insertion

Pain after IUD placement was a common finding among the sample studies. Reports of pain were still present even at 1 year follow up [20,21,23,26,29-30]. Two studies reported higher rates of pain in adolescents. Rasheed and Abdelmonem (2011), reported a statistically significant (p=0.015 at 1 month and p=0.004 at 3 months) reporting of pain among adolescents (56.9% at 1 month and 28.4% at 3 months) compared to adults (23.9% at 1 month and 25.1% at 3 months) [22]. After three months there was no longer a statistical difference in the rates of pain between adolescents and adults [22], 29% of participants in a second study reported significant (p<0.001) higher rates in the participants in the youngest age group, 13-19 (38%) compared to those age 20-24 (32%), and 25-35 (32%) [29].

Pelvic inflammatory disease (PID) or pelvic infection / Infertility

Both parity and history of sexually transmitted infection (STI) were described to be significant factors in infections related to IUD use [31]. The relative risk for nulliparous (RR=5.60) was significantly higher (p<0.001) than multiparous women. Additionally, history of a prior STI (RR=5.48) was also found to be statistically significant (p<0.001) [31]. Age was not found to be significant (p=0.11) [31]. Six other studies reported pelvic infections ranging from vaginitis, cervicitis, to PID; however no correlations were made between age or parity [25-29,30]. Only one study investigated IUDs risk of infertility on nulliparous women [24]. It was concluded that the use of IUDs did not increase the risk of infertility in nulliparous women, however a history of an infection with Chlamydia trachomatis did [24].

Continuation rates

Three studies found IUD removal rates to be greater in adolescents compared to older women [22,29,31] Rasheed and Abdelmonem (2011), found adolescents’ rates of early removal of IUD at 1 month (20.1%) to be statistically higher (p=0.001) than adults (5.6%). There were no significant difference in rates noted at the 3 (p=0.120) and 6 month (p=0.690) follow ups [22] Alton, et al. (2012), compared IUD rates of early removal between adolescents <18 to women >18 to 21,31 Adolescents <18 (19% at 6 months, 30% at 1 year, and 50% at 5 years) were found to have significantly higher (p<0.001) rates of early IUD removal compared to women >18 to 21 years of age (6% at 6 months, 11% at 1 year, and 28.5% at 5 years) [31]. IUD retention rates were not found to be different between nulliparous and multiparous women [23,29,31] On initial review of study findings, Alton, et al., found nulliparous to have higher rates of early IUD removal rates, however once age was controlled as a confounder, parity was found not to be significant (p=0.132) [31].

Discussion

The US has some of the lowest rates of IUD use in the world, part of which is due to health care providers misconceptions regarding IUD use particularly in nulliparous women.9 Fear of inserting IUDs in adolescent and nulliparous women may be based the relative size of the uterine cavity, the ease of cervical dilatation in multiparous women is greater than in nulliparous women, and the fear of infection such as PID that may lead to infertility [9,17,22,24] Based on the understanding of these plausible concerns, and the lack of existence of studies focused solely on the use of IUDs with adolescents, this systematic review looked specifically at empirical studies which investigated the use of IUDs in nulliparous and adolescent women. Based on this criteria 12 studies were found for inclusion. All of the studies included in this sample support the positions put forth by ACOG, the AAP, and WHO regarding the use of IUDs in adolescents. Overall, IUD use in nulliparous women and adolescents was not found to have increased rates of uterine perforation, pregnancy, pelvic infections, or infertility. Age and parity was found in some studies to be associated with increased pain with insertion, IUD expulsion, pain after insertion, bleeding, and decreased IUD continuation rates. However, the association between age and parity and these potential IUD related side effects were not significant enough to discredit the use of these devices. Additionally, more research is warranted to identify potential means of decreasing the
occurrence of these side effects with this population rather than failing to use a highly effective long term reversible contraceptive method with a population which can benefit so greatly from such protection.

Prophylaxis and symptomatic treatment may be the key to improving the use of IUDs with adolescents and nulliparous women. Research is already being conducted regarding means of decreasing pain with IUD insertion. The use of sublingual misoprostol to prime the cervix prior to insertion of the IUD may be a potential means to ease the insertion of IUDs [32]. There may also be potential for research surrounding IUDs that decrease rates of expulsion in adolescents and nulliparous women. The study included in this review by Otero-Flores, Guerrero-Carreño, and Vázquez-Estrada (2003), found smaller IUDs TCu 380 Nul and ML Cu 375 sl which were trialed with nulliparous women had significantly lower rates of expulsion, pain after insertion, and bleeding when compared to TCu 380A [21]. These two trial IUDs for nulliparous women, TCu 380 Nul and ML Cu 375 sl, are not available currently in the US. However, additional studies surrounding smaller devices such as these may be a potential solution for higher rates of uterine expulsion associated with traditional IUDs in adolescent and nulliparous women. IUD continuation rates are lower in adolescents when compared to older women [22,29,31]. However, the rates of adolescent continuation, or consistency with any contraceptive method may also vary from that of adults. Suhonen, Haukkamaa, Jakobsson, and Rauramo (2004) found young, nulliparous women's continuation and satisfaction rates with IUDs were higher than those using oral contraceptives [20].

It is apparent that the use of IUDs with adolescents and nulliparous is an effective, safe an at risk population who should be encouraged to opt for LARCs such as IUDs. Despite the benefits of IUDs for adolescents, knowledge regarding the contraception method is not adequately being disseminated to the adolescent population. In a study which surveyed adolescent girls’ ages 14-19, only 21% had heard of an IUD as a potential contraception method. [33]. Health care providers need to educate both themselves and their patients on the advantages of utilizing IUDs with adolescents and nulliparous women, and potential steps that can be taken to decrease any adverse effects.

References