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Introduction
The analytical solution of the atmospheric diffusion equation 

contains different depending on Gaussian and non–Gaussian solutions. 
An analytical solution with power law of the wind speed and eddy 
diffusivity with realistic assumption is derived by Demuth [1] and Essa 
[2]. Most of the fundamental theories of atmospheric diffusion were 
proposed in the first half of the twentieth century.

The atmospheric dispersion modeling refers to the mathematical 
description of contaminant transport in the atmosphere is used to 
describe the combination of diffusion and advection that occurs within 
the air the earth’s surface. The concentration of a contaminant released 
into the air may therefore be described by the advection – diffusion 
equation by Stockie JM [3].

The advection – diffusion equation has been widely applied 
in operational atmospheric dispersion model to predict the mean 
concentration of contaminants in the planetary boundary layer (PBL) 
which is obtain the dispersion from a continuous point source by 
Tiziano T et al. [4].

For nearly thirty years it has been known that vertical concentration 
profiles from field and laboratory experiments of near-surface point 
sources releases exhibit non-Gaussian distribution [5-7]. In this work 
diffusion equation is solved in two diffusivity which depend on the 
vertical height in unstable case. The statistical technique is used in 
dimensions to obtain the concentration by using separation of variables 
under the variation of eddy. The diffusion equation of pollutants in air 
can be written in the form by Arya [8].

Mathematical Model
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where c(x,y.z) is the concentration in the three dimensions x, y and 
z directions respectively, Ky and Kz are the crosswind and vertical 
turbulent eddy diffusivity coefficients of the PBL and u is the mean 
wind oriented in the x direction . 

Equation (1) is subjected to the following boundary condition.
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Q is the emission rate, hs are the stack height, h is the height of PBL 
and δ is the Dirac delta function.

By integration with respect to y from -∞ to∞, then one gets:
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By substituting from equations (3) and (4) into equation (2), one 
can get:
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Bearing in mind the dependence of the Kz coefficient, h is the height 
of PBL is discretized in N sub- intervals in such a manner that inside 
each interval Kz assume average value. Then the value of the average 
value is:
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Abstract
The diffusion equation is solved in two dimensions to obtain the concentration by using separation of variables 

under the variation of eddy diffusivity which depend on the vertical height in unstable case. Comparing between the 
predicted and the observed concentrations data of Sulfur hexafluoride (SF6) taken on the Copenhagen in Denmark is 
done. The statistical method is used to know the best model. One finds that there is agreement between the present, 
Laplace and separation predicted normalized crosswind integrated concentrations with the observed normalized 
crosswind integrated concentrations than the predicted Gaussian model. 
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Substituting from equation (22) in equation (17) then one gets:
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Using the boundary condition (iii). The equation (23) written as:
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Multiplying equation (24) by cos( z)n
h
π

then one gets: 
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Integrating equation (25) from 0 to h, we have that:
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Substituting by equation (28) in equation (23) one obtains:
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Then the concentration at n = 0, we have that:
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At n = 1 one can get:
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For simplicity the crosswind integrating concentration in the form:
2
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Taking kn = k0w*z (1- z/hs). Where k0 is the von- Karman constant 
(k0~0.4), Z is the vertical height, hs is the stack height at 115m and w* is 
the convection velocity scale (Table 1). 

Figure 1 shows that the predicted normalized crosswind integrated 
concentrations values of the present, separation, Laplace and Gaussian 
predicted models and the observed via downwind distance. 

The solution of equation (5) is reduced to the solution of “N” 
problems of the type 

2

2

( , ,z) ( , )y y
n

c x y c x z
u k

x z
∂ ∂

=
∂ ∂

                                                                                                                 (6) 

Cy(x, z) is called cross- wind integrated concentration of nth sub-

interval.

Let the solution of equation (6) using separation variables is in the 
form.

c(x,z) =X(x) Z(z)

Then equation (6) becomes:
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Divided equation (7) on X(x) Z (z) one gets:
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Where α is constant. The solution of the first term of equation (8) 
can be written as: 
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By integration from 0 to x, one gets: 
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Then equation (10) becomes:  
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The second term of equation (8) can be written as:
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Then the solution of equation (12) is written in the form:
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Then the general solution becomes in the form:
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Applying the first boundary condition (i) one gets:
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Substituting by z = 0 then one can get:
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The general solution can be written as:
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Using the boundary condition (ii) one gets:
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Figure 2 shows that the predicted normalized crosswind integrated 
concentrations values of the present, separation, Laplace and Gaussian 
predicted models via the observed.

From the above two figures, we find that there is agreement 
between the present, Laplace, Gaussian predicted normalized 
crosswind integrated concentrations with the observed normalized 
crosswind integrated concentration than predicted concentration 
using separation technique.

Model Evaluation Statistics
Now, the statistical method is presented and comparison between 

predicted and observed results will be offered by Hanna [9]. The 
following standard statistical performance measures that characterize 
the agreement between prediction (Cp =Cpred/Q) and observations 
(Co=Cobs/Q): 
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Figure 1: The variation of the three predicted and observed models via down 
wind distances.

 

N
or

m
al

ize
d 

cr
os

sw
in

d 
co

nc
en

tr
ati

on
 (1

0-4
 sm

-2
)

12

10

8

6

4

2

0

separation
Gaussian
Laplace
Present

Observed concentrations

6.
48

2.
31

5.
38

2.
95 8.

2
6.

22 4.
3

6.
72

5.
84

4.
97

3.
96

2.
22

1.
83 6.

7
3.

25
2.

23

4.
16

2.
02

1.
52

4.
58

3.
11

2.
59

Figure 2: The variation of the three predicted before and present models via 
observed concentrations.

Run 
no

Date PG
Stability

Kn h     (m) W* U10
(ms-1)

Distance
(m)

Cy/Q
(10-4 sm-2)

Observed Computed
w* (m/s) Separation Gaussian Laplace Present

1 20-9-78 A 0.14375 1980 1.8 3.34 1900 6.48 7.17 5.16 7,7046931 5.997743
1 20-9-78 A 0.14375 1980 1.8 3.34 3700 2.31 5.13 2.52 3,488227 5.997164
2 26-9-78 C 0.14375 1920 1.8 3.82 2100 5.38 3.7 2.29 4,61996 5.405101
2 26-9-78 C 0.14375 1920 1.8 3.82 4200 2.95 2.18 1.18 2,306918 5.404535
3 19-10-78 B 0.103819 1120 1.3 3.82 1900 8.20 9.8 4.51 8,410968 9.106625
3 19-10-78 B 0.103819 1120 1.3 4.93 3700 6.22 7.53 2.65 3,220596 7.05554
3 19-10-78 B 0.103819 1120 1.3 4.93 5400 4.30 7.44 2.58 1,613861 7.054574
5 9-11-78 C 0.055903 820 0.7 4.93 2100 6.72 9.30 3.63 6,580095 5.738531
5 9-11-78 C 0.055903 820 0.7 6.52 4200 5.84 7.87 2.44 2,044103 7.123884
5 9-11-78 C 0.055903 820 0.7 6.52 6100 4.97 7.86 2.41 1,00388 7.122991
6 30-4-78 C 0.159722 1300 2 6.52 2000 3.96 3.57 1.63 3,751729 7.117371
6 30-4-78 C 0.159722 1300 2 6.68 4200 2.22 2.50 0.82 1,703804 4.517276
6 30-4-78 C 0.159722 1300 2 6.68 5900 1.83 2.20 0.68 1,005404 4.516596
7 27-6-78 B 0.175694 1850 2.2 6.68 2000 6.70 5.27 2.51 5,917179 4.515889
7 27-6-78 B 0.175694 1850 2.2 7.79 4100 3.25 3.52 1.17 2,893086 2.749032
7 27-6-78 B 0.175694 1850 2.2 7.79 5300 2.23 3.06 0.79 2,123662 2.748846
8 6-7-78 D 0.175694 810 2.2 8.11 1900 4.16 8.39 4.20 7,124995 2.640299
8 6-7-78 D 0.175694 810 2.2 8.11 3600 3.02 6.21 2.80 3,123895 5.789855
8 6-7-78 D 0.175694 810 2.2 8.11 5300 1.52 5.89 2.18 1,518876 5.788336
9 19-7-78 C 0.151736 2090 1.9 11.45 2100 4.58 3.43 2.20 4,902058 4.100087
9 19-7-78 C 0.151736 2090 1.9 11.45 4200 3.11 2.77 1.13 2,485021 1.659012
9 19-7-78 C 0.151736 2090 1.9 11.45 6000 2.59 2.49 0.81 1,682239 1.65896

Table 1: Comparison between the predicated and observed crosswind- integrated concentration normalized with the emission source rate at different boundary layer height, 
downwind distance, wind speed, scaling convection velocity and distance for the different runs.
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where σp and σo are the standard deviations of Cp and Co respectively. 
Here the over bars indicate the average over all measurements. A 
perfect model would have the following idealized performance: NMSE 
= FB = 0 and COR= FAC2 = 1.0.

Where σp and σo are the standard deviations of Cp and Co respectively. 
Here the over bars indicate the average over all measurements. A 
perfect model would have the following idealized performance: NMSE 
= FB = 0 and COR = 1.0 (Table 2).

From the statistical method, we find that the four models are 
inside a factor of two with observed data. Regarding to NMSE and FB, 
the present, Laplace and separation predicted models are well with 
observed data than the Gaussian model. The correlation of present, 
Laplace and separation predicated model equals (0.52, 0.64 and 0.60 
respectively) and Gaussian model equals (0.80).

Conclusion
The crosswind integrated concentration of air pollutants is 

obtained by using present model by separation technique to solve 
the diffusion equation in two dimensions. Considering that the eddy 

diffusivity depends on the vertical distance in unstable case. One finds 
that there is agreement between the present, Laplace and separation 
predicted normalized crosswind integrated concentrations with the 
observed normalized crosswind integrated concentrations than the 
predicted Gaussian model.

From the statistical method, one finds that the predicted models 
are inside a factor of two with observed data. Regarding to NMSE and 
FB, the present, Laplace and separation predicted models are well with 
observed data than the Gaussian model. The correlation of present, 
Laplace and separation predicated model equals (0.52, 0.64 and 0.60 
respectively) and Gaussian model equals (0.80).
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