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1. Introduction
Mathematics as a branch of human endeavour had early beginnings 

with geometry. The efforts of mathematicians led to the fields such as 
trigonometry, algebra etc. Many branches of mathematics had their 
beginnings in attempting to solve problems associated with natural 
and/or artificial phenomena. One such branch was classical probability 
theory. Efforts of mathematicians such as Pascal, Bayes, Bernoulli etc. 
led to various basic concepts of classical probability theory.

In trying to abstract the notion of length of a subset of real line, 
Lebesgue formalized the “theory of measure” [20]. Probability theory, 
was considered as the theory associated with measure space of finite 
(one) measure. Thus, probability theory was provided a rigorous 
axiomatic footing. Researchers realized that some uncertainities 
associated with human reasoning cannot be modeled using probability 
theory. Thus, fuzzy logic was proposed as an alternative to model 
certain types of uncertainty.

After understanding the concept of fuzzy set, the author reasoned 
the need for negative membership function in [19]. This innovative 
idea motivated the author to see if a consistent theory can be developed 
in which the probabilities (called “chances”) are allowed to assume 
negative values. More generally, the author proposed to allow “chances” 
to assume even complex values (complex numbers). Also, the author 
proposed to formalize a consistent theory of stochastic chains based 
on real, complex valued chances. The associated effort resulted in this 
research paper.

• Motivation for the theory of chances

In traditional as well as modern probability theory, on spaces with
finite, countable number of outcomes it is assumed that the probability 
of every outcome is a nonnegative number lying in the interval [0,1]. 
After careful contemplation, the author reasoned that there are many 
experiments in which some of the outcomes are “favourable” to the 
events (defined on the space of outcomes), while the other outcomes 
are totally “un-favourable” (to the events considered). More explicitly, 
in many real world situations, outcomes have diametrically opposite 
possibility of occurring in some events.

Specifically, let us consider an experiment in which we observe 
temperatures in a certain region of our planet. Let the temperatures 
(outcomes in the experiment) assume positive as well as negative values. 
We consider the events: “HOT” and “COLD” day. A temperature value 
of - 25 degrees Centigrade has “negative” CHANCE in the event “HOT” 
days (and not “zero” or small positive value in the “HOT” Day event). 
Similarly, a temperature of +50 degrees Centigrade has “NEGATIVE 

CHANCE” in the event COLD day.

It is possible to give several real world experiments in which 
“chances” of outcomes necessarily assume negative values (For 
instance “summer season” related events SUNNY, CLOUDY, RAINY 
and the associated temperature values). Thus the author was naturally 
motivated to develop a detailed “THEORY OF CHANCES” on spaces 
with “uncountable” as well as “countable” outcomes.

• Early attempts

In theoretical physics literature, physicists were naturally led to
negative probabilities in modeling problems. For some reason, such 
models were abandoned. Also probabilists encountered characteristic 
functions, whose inverse Laplace transforms are not probability 
densities. For a variety of reasons, such characteristic functions were 
also not utilized in stochastic modeling.

This research paper is organized as follows. In section 2, we discuss 
the theory of L2p real valued chances and the associated stochastic 
chains. In section 3, we allow the chances to assume complex numbered 
values. The associated complex chance based stochastic chains are 
discussed in this section. In Section 4, probabilistic/chance number 
theory is discussed. In Section 5, theory of L1 chances is discussed and 
also the associated stochastic chains are briefly discussed. In Section 6, 
theory of random sets and graded sets is briefly discussed. The research 
paper concludes in Section 7.

2. Theory of L2p Real Valued Chances: Novel Stochastic
Chains

Probability theory was successful in modeling a certain type 
of uncertainty. Researchers proposed the need for other types of 
uncertainty such as fuzzy uncertainty. After a careful understanding 
of various types of uncertainty, the author proposes a novel theory 
of uncertainty, called the theory of chances. This theory constitutes a 
variation of probability theory [9].
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For the sake of simplicity and concreteness, we first consider space 
of chances with finite/countable number of outcomes.

Two outcome case

• Let us first consider a “chance space” with two outcomes i.e. {w1, 
w2} we have

1 2(w ) 0or, (w ) 0≥ <Q Q

1 1(w ) 0or, (w ) 0≥ <Q Q

1 2(w ) 0 (w ) 0or,≥ ≥Q Q

1 2(w ) 0 (w ) 0or,≤ ≤Q Q

Also, we must necessarily have that
2 2

1 2[ (w )] [ (w )] 1+ ≤Q Q

Thus, in this simple case, the chances of outcomes lie on a circle 
of unit radius centered at the origin. More generally, we consider a 
“Chance space of pth kind” in which case

2 2
1 2[ (w )] [ (w )] 1p pQ Q+ =  

“p’ an integer. When p=1, we have a basic chance space. Also, 
generalized chances (parametrized by “p”) are constrained to lie on an 
arbitrary hypersurface or manifold. There are uncountably many such 
chance spaces.

Remark

Even in the case of a probability space, with two outcomes, the 
probabilities of outcomes lie on a straight line. Thus, probabilities, like 
chances are also constrained. More generally, we can consider general 
constraint sets on which the “generalized chances” lie. 

It should be noted that we are interested in the “normalized 
chance” of events. Thus, the “normalized chance” of an event is the 
sum of squares of chances of constituent outcomes.

Finite outcome case

Now, let us consider a “chance space” (unlike probability space) 
with finitely many outcomes (say N outcomes i.e. w1, w2,....,wN). In 
such a space, chances of some/all outcomes assume negative values 
satisfying the condition

2 2 2
1 2 N[ (w )] [ (w )] .... [ (w )] 1Q Q Q+ + + =

i.e. the set of all possible chances (of outcomes ) constitute the vectors 
on the unit hypersphere in N dimensional Euclidean space. More 
generally, we can consider a “chance space of pth kind” in which, 

2 2 2
1 2 N[ (w )] [ (w )] .... [ (w )] 1p p pQ Q Q+ + + =  

When p equals one, we have a “basic chance space”. Thus, there 
are uncountably many chance spaces (corresponding to vectors on the 
unit hyper sphere). 

Definition

It should be kept in mind that the “normalized chance” of an event 
is the sum of squares of chances of the constituent outcomes.

Remark

One of the main reasons for “normalization” is the following: 
Suppose, we consider a chance space with countably many outcomes. 

Let  1 2(w ) d and (w ) dQ Q= = −

Consider the event 1 2{w , w }C =   then

( ) 0=Q c

Which is sometimes not reasonable while defining the chance of 
the event C.? But the normalized chance of event C is 2(c) 2Q d=

Remark

Since each chance space corresponds to a point on the unit 
hypersphere, one can introduce the notions such as “linearly 
independent chance spaces”, “orthogonal chance spaces” etc. Detailed 
results are derived using the well-known results of linear algebra.

Countable outcome case

We now consider the “chance space” with countable number of 
outcomes. The chances of outcomes assume positive or negative values 
such that

2
i

1
[ (w )] 1

i
Q

∞

=

=∑
On treating the set of chance values as vectors, the set of all possible 

chance vectors (of outcomes) constitute the points on the infinite 
dimensional unit hyper sphere (in the infinite dimensional Euclidean 
space). Thus, there are uncountable many possible chance spaces. But 
it is well known that the set of “square summable” sequences constitute 
the “discrete Hilbert space”. Thus the set of all possible chance vectors 
in the infinite dimensions is a subset of the discrete Hilbert space. More 
generally, we have

2
i

1
[ (w )] 1p

i
Q

∞

=

=∑
Let us return to the basic chance space, when the number of 

outcomes is countable. Treating the chance vectors (in the countable 
outcome case) as infinite dimensional vectors, results of infinite-
dimensional linear algebra can be utilized to relate the chance spaces.

Remark

We have another interesting case in which the chances of outcomes 
can be negative and we have the normalization condition that 

i i
1 1
| (w ) | 1 | (w ) | 1

N

i i
Q or Q

∞

= =

= =∑ ∑
Remark

In the finite/countable chance spaces (previously considered), 
concepts like “conditional chance” (like conditional probability), 
“independent events” etc are easily defined and utilized. Also, using 
the concept of “normalized chance”, “modified distribution function” 
is defined and studied (in the case of finite/countable chance spaces). In 
summary, the concepts/Lemmas/Theorems of probability theory have 
their parallels in the theory of 2 pL chances.

Novel Stochastic Chains: Real Valued Chance Case:

In the following, we consider an interesting class of chance/random 
processes defined on chance spaces [Rama3].

• Consider a sequence of random variables i{X }
0i

∞
=  defined 

on a chance space ( , , )QβΩ  Let the sequence satisfy the Markovian 
property i.e. Let m < n. We have 
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n 0 1 m n m{X j | X ,X ,....,X } {X j | X }Q Q= = =

Thus, let the one-step state transition matrix be denoted by R, 
where 

n 1 n{X j | X i}ijR Q += = =

Also, let the sequence of chance vectors (be row vectors) be denoted 
by {vn, n ≥ 0} where jth component of vn be jnQ{X }= . it is easy to 
see that given v0 is a chance vector, the sequence of vectors {vn, n ≥ 
1} constitute chance vectors if R is an orthogonal matrix. Thus, as in 
the case of Markov chains, we have the following recurrence equation 
involving chance vectors and the state transition matrix. 

n 1 nv v R for n 0.+ = ≥

Remark

This investigation is motivated by the Hopfield associative memory 
[Hop]. The main observation is that the state of Hopfield network (at 
all-time instants) lies on the hypercube [2]. This observation motivated 
the author to conceive of dynamical systems (linear/non-linear) whose 
state lies on a constraint set such as unit hypersphere, bounded lattice, 
complex hypercube etc [3,8]. The author expects that such dynamical 
systems naturally arise in modeling of neural and other types of systems.

Now we investigate the convergence behavior of the above linear 
dynamical system.

• Linear System with State Dynamics on the Unit Hypersphere:

Consider a discrete time dynamical system with the following state 
dynamics v(n 1) v(n)R for n 0.+ = ≥ where

R is an “orthogonal” matrix; V (n) is a row vector for all n. It is easy 
to see that, if V (0) is constrained to lie on the unit hypersphere, then 
V (n) lies on unit hypersphere for all “n”. The following lemma on the 
spectrum of R is well known 

Lemma 2.1: All the eigenvalues of an orthogonal matrix lie on the 
unit circle.

Using the above lemma, we make the following conclusions on the 
stability of such linear dynamical system.

• Suppose V (0) is the left eigenvector corresponding to any one of 
the eigenvalues on the unit circle. Let the eigenvalue be 

maxλ Then, we have 
n
maxv(n) v(0)= λ

Thus, we necessarily have that

Lim n tends to | v(n) | v(0)∞ =  

Hence, in this case, we have convergence to an equilibrium chance 
vector (which happens to be the initial vector). 

• Suppose V(0) is an arbitrary row vector that lies on the unit hyper 
sphere i.e. 

Since R is an orthogonal matrix, we have that TV (0) RD= for some 
column vector D.

Thus, we have
T TR D D R 1=

Hence, we have the following equation
T nV(n 1) D R+ =

Suppose the orthogonal matrix R is diagonalizable i.e.
M

i i
i 1

R F
=

= λ∑
Then, we necessarily have that

M
n n

i i
i 1

R F
=

= λ∑
Hence, we necessarily have that

M
T n n T

i i
i 1

V(n 1) D R D F
=

+ = = λ∑
Using Cauchy-Schwarz inequality and the fact that all the 

eigenvalues lie on the unit circle, we have
M

T
i

i 1
| V(n 1) | | D F |

=

+ ≤∑  For all n.

From the above equation, the limiting behavior can be upper 
bounded.

• Now, we consider the case where “R” is “orthogonal” as well as 
“symmetric” i.e.

T T 1R R and R R−= =
Imply that R2=I The following claim follows easily and the proof is 

avoided for brevity

• Claim: The eigenvalues of a symmetric, orthogonal matrix are 
either +1 or -1.

Thus, we necessarily have

1 2R F F= −

Where F1 is the sum of residue matrices corresponding to the 
eigenvalue “one” and F2 is the sum of residue matrices corresponding 
to the eigenvalue -1 (minus one). With the above Lemma, we are able 
to prove the following Convergence Theorem regarding the stability of 
linear dynamical system. 

V(n 1) V(n) R For n 0+ = ≥

Since R2=I we immediately conclude that the above linear 
dynamical system is periodic.

Theorem 2.1: Consider the linear dynamical system

V(n 1) V(n) R For n 0+ = ≥

With the row vector V (0) lying on the unit hyper sphere. The 
limiting behavior of the above dynamical system is characterized by 
the following two cases:

• cycle of length 2 (V(0),V(0) R,V(0) V(0) R,...)

• convergence to a single vector 2(when V(0)or V(0) F 0)=

The proof follows and is avoided for brevity.

Remark

In view of the above Theorem, novel stochastic chains characterized 
by symmetric orthogonal matrix converge to an equilibrium chance 
vector when 2V(0)or V(0) F 0= in many practically interesting cases; 
such a choice of initial chance vector can always be made. The practical 
utility of such chains need to be addressed.

• Suppose ‘V (0)’ is infinite dimensional and V(0) VT(0) =1. Then, 
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by definition V (O) belongs to the “discrete Hilbert space”. Also, all the 
vectors V (n) for all n lie on the infinite dimensional unit hyper sphere. 
The limiting behavior in the infinite dimensional case is similar to that 
in finite dimensional case.

Remark

It should be noted that Markov chains exist in discrete time as well 
as continuous time. But it is possible to reason that the continuous time 
counterparts of the novel stochastic chains (discussed above) do not 
exist. Specifically, the sojourn time (in each state) being Poisson and 
the underlying discrete time stochastic chain being "L2-norm based 
chance process” is simultaneously impossible. 

Uncountable outcome case

We now consider the case where the set of outcomes is uncountable. 
For the sake of simplicity, we consider the real valued chance case. 

• Let f(x) be the “chance density function” which can assume 
positive as well as negative values. Let B be an event defined on the 
chance space 

B

f (x)dx Q(B)=∫
• As in the countable outcome case, the “normalized chance 

density” is defined as
2g(x) f (x) with g(x)dx 1= =∫

Thus, the chance density function f(x) belongs to the Hilbert space 
i.e. L2 space.

Remark

As in the countable outcome case, concepts in traditional 
probability theory (in the case where probability space has uncountable 
many outcomes) have parallel counterparts in the case where the 
chance space has uncountable many outcomes. Detailed explanation 
can be found in [8].

Note

In the following section, we consider a generalization of the case 
considered here. For the purposes of clarity and completeness, parallels 
of the concepts considered in this section are explicitly included.

3. Theory of L2p Complex Valued Chances: Novel 
Stochastic Chains

In the previous section, we allowed chances (unlike probabilities) 
to assume negative values. A natural question arises as to whether the 
chances can be allowed to assume “complex (numbered) values”. More 
interestingly, we propose and formalize a consistent “theory of complex 
valued chances”. As in the previous section, based on complex valued 
chances, we formalize the “theory of complex novel stochastic chains”.

Consider a set Ω  with finitely many outcomes 1 2 N{w , w ,...w }  
Let the chance ic(w )  be a complex number for i=1,2,…, N. The real 
and imaginary parts of ic(w )  can assume positive or negative values. 

Furthermore, let i0 | c(w ) | 1≤ ≤  with the condition 
N

2
i

i 1
| c(w ) | 1

=

=∑  

More generally, we can consider a “complex chance space of pth 

kind” in which we have 
N

2p
i

i 1
| c(w ) | 1

=

=∑
When p=1, we have a “Basic complex chance space” (as in the real 

valued case). For the purposes of brevity, in the following discussion, 
we only consider the basic chance space. Thus, in this case, the chance 
vector (with the components being the chance values of the outcomes) 
lies on the “complex N dimensional hyper sphere”.

Definition

The ‘normalized chance” of an event is equal to the sum of squares 
of magnitudes of constituent outcomes (implicitly, the normalized 
chance of an outcome is equal to the square of magnitude of the 
complex valued chance).

Note

In this theory of complex valued chances, we have concepts that 
are parallel of those in the traditional probability theory. We utilize 
normalized chances to formalize the definitions. For the purposes of 
illustration, some definitions are provided below.

• Chance Mass Function: It is a function which assigns complex 
valued (with positive as well as negative real parts) chances to each 
outcome in the chance space (The normalization condition is satisfied 
by the complex valued chances).

The normalized chance mass function assigns to each outcome, the 
squared magnitude of the associated complex valued chance.

• Random Variable: It is a function from the space of outcomes (in 
the chance space) to the real/complex number field.

• Cumulative Chance Distribution Function: It is a function based 
on the events associated with the random variable. Given a random 
variable X, the cumulative chance distribution XF (x)  is given by the 
following expression:

xF (x) c{w : X(w) x}= ≤  

Where c{.}  is the normalized chance of the event. Thus, in terms 
of chances, we have the following expression for xF (x)

i i

2
x i

{w :X(w ) x}
F (x) | c(w ) |

≤

= ∑
Where |.| denotes the absolute value of the complex number.

• Random/Stochastic Process: Chance based random process is a 
collection (countable or uncountable) of random variables defined on 
the chance space ( , , c)Ω β  Study of such random processes proceeds 
along the same lines as stochastic processes defined on the traditional 
probability space.

Complex valued chance based novel stochastic chains

Now, we consider a countable state space random process (defined 
on a chance space) i i 1{Y }∞=  which satisfies Markovian-Type property 
i.e. letting m < n, we have n 0 1 2 m n mc{Y j | Y ,Y ,Y ...Y |} c{Y j | Y }= = =

Thus, such a stochastic process (complex valued chance based) 
is completely characterized by the one step state transition matrix 
denoted by S, where

ij n 1 nS c{Y j | Y i |}+= = =

Now, let

n ic{Y i} (n)= = µ

For the sake of simplicity, let us first consider the case where the 
state space associated with all the random variables is a fixed finite 
number. Thus, at each time instant, we have the chance vector (with 
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complex valued components) (n)µ  Specifically, let the chance vector 
at time “zero” (n = 0) lie on the complex unit hyper sphere i.e. 

*(0) (0) 1µ µ =  Where *(.)µ  denotes the complex conjugate 
transpose of vector (matrix). Thus, by the Markovian type property, 
we have 

(n 1) (n)s (**)µ + = µ

Consider the case where “S” is a unitary matrix. In such a case, it is 
easy to verify the following claim.

Claim: Given that (0)µ  is a chance vector (with complex valued 
components) lying on the complex unit hyper sphere, the sequence of 
vectors n{ ;n 1}µ ≥  also constitute chance vectors lying on the complex 
unit hyper sphere.

Now, we would like to investigate the equilibrium behavior of the 
linear dynamical system specified by (**). The following Lemma from 
linear algebra is very helpful.

Lemma: All the eigenvalues of a unitary matrix lie on the unit circle.

Note: As in the case of real valued chance based random process, 
results related to equilibrium behavior are easily derived. Details are 
avoided for brevity.

We now consider the case where S is a “unitary” as well as 
“Hermitian” matrix. i.e.

* 1S SandS S−= =

Thus, using basic results in linear algebra, we necessarily have that 
“S” is diagonalizable and 

2S I=

Consequently, we have the following Lemma.

Lemma: The eigenvalues of a Hermitian, Unitary matrix are either 
+1 or -1. Hence, we have that

1 2S G G= −

Where G1 is the sum of residue matrices corresponding to the 
eigenvalue “one” and G2 is the sum of residue matrices corresponding 
to the eigenvalue -1 (minus one).

The above inferences naturally lead to the following Theorem (in 
the same spirit of Theorem (2.1) in Section 2).

Theorem 3.1: Consider the linear dynamical system

(n 1) (n)s for n 0µ + = µ ≥

The row vector (0)µ  lying on the complex unit hyper sphere. The 
steady state (equilibrium) behavior of the above dynamical system is 
characterized by the following two cases:

• cycle of length 2 ( (0), (0)S, (0), (0)S,...)µ µ µ µ  

• convergence to a single vector  when 1 2(0)G 0or (0)G 0µ = µ =

The proof follows based on the above facts and is avoided for 
brevity.

•  Summary of the Results:

In the same spirit of Markov chains, we have a sequence of random 
variables i i 1{Y }∞=  associated with the chance vectors (with complex 
valued components) n n 0{ }∞=µ we have the following linear dynamical 
system.

(n 1) (n)Sµ + = µ

Where S is a unitary and Hermitian matrix. The novel stochastic 
chain converges to an equilibrium chance vector when

1 2(0)G 0or (0)G 0µ = µ =

It is expected that in many practical interesting cases, such a choice 
of initial chance vector can always be made. We expect that such novel 
stochastic chains (with associated complex valued chance vectors) are 
of utility in science, engineering, economics and other fields.

Remark

The generalization to countable state space stochastic chains 
follows in a straightforward manner

Remark: We also propose another definition of “normalized 
chance”. The normalized chance of an outcome (in finite or countable 
chance spaces) is the magnitude of the chance (which can be complex 
valued). Thus, the normalized chance of an event is the sum of 
normalized chances of the constituent outcomes. We consider the case 
where the sum of magnitudes of chances is one.

Generalizations

• It is well known that discrete time Markov chains have 
multidimensional extensions, called Markov Random Fields. So, along 
these lines, we are currently investigating multidimensional extensions 
of “chance based stochastic chains”.

• It is also known that discrete time Markov chains have 
“k-dependent (number of past steps) Markov chains”. So a natural 
extension is to study “k-dependent chance stochastic chains.”

• Furthermore, it is also known that “quaternions”, “Clifford/
Grossmann algebra” are considered as generalizations of complex 
numbers. Thus chances are allowed to assume such generalized 
structures.

4. Waring Problem: Probabilistic/Chance Number Theory

In view of the waring problem the following sums are naturally 
considered. In elementary mathematics, these sums are naturally 
studied.

m 2
i 1

m(m 1) 1 11 2 3 ... m i m m
2 2 2=

+
+ + + + = = = +∑

m2 2 2 2 3 2
i 1

m(m 1)(2m 1) 1 1 11 2 ... m i m m m
6 3 2 6=

+ +
+ + + = = = + +∑

2 2
m3 3 3 3 4 3 2
i 1

m (m 1) 1 1 11 2 ... m i m m m
4 4 2 4=

+
+ + + = = = + +∑

In general, in the spirit of above sums, let us define the following 
most general sum 

(s) s s sh (m) 1 2 ... m= + + +

For general ‘s’, Faulhaber’s formula provides the expression for the 
associated polynomial. It is well known that these polynomials can be 
expressed in terms of Bernoulli polynomials.

On observing the coefficients of polynomials (1) (2) (3)h (.), h (.), h (.)  
it is clear that they sum to one. From the Faulhaber polynomials, we 
realize that not all the coefficients are non-negative. Thus, the following 
definitions are motivated.

Definition: A probability polynomial is a polynomial all of whose 



Citation: Murthy GR (2014) Theory of Chances: Novel Stochastic Chains: Linear Algebraic Approach. J Appl Computat Math 3: 191. doi:10.4172/2168-
9679.1000191

Page 6 of 16

Volume 3 • Issue 7 • 1000191
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

coefficients are non-negative and sum up to one.

Definition: A probability-type polynomial is a polynomial the sum 
of whose coefficients is one. The coefficients need not all be positive 
numbers.

We have the following Theorem on the above sums.

Theorem 4.1: Let
(s) s s s 1 s

s 1 s 1h (m) 1 2 ... ms a m a m ... a s+
+= + + + = + + +

We claim that (s)h (.)  is a “probability” polynomial or “probability-
type” polynomial. We can also call ‘probability type’ polynomials as 
“chance” polynomials [9].

Proof: Follows from the argument in Wikipedia article Q.E.D.

Remark

The implications of the above Theorem are fully being investigated 
in [8]. It should be noted that with Faulhaber formula stated as an 
identity, the above result can be obtained by substituting n equal to 1.

Also, Faulhaber realized that the ‘sum”, (s)h (m)  for odd values of 
“s” can be expressed as a polynomial in ‘a’, where

m(2p 1) (2p 1) 2 3 p 1
1 2 pk 1

m(m 1)h (m) k c a c a ... c a and a
2

+ + +
=

+
= = + + + =∑

Lemma 4.1: In the above equation/expression, 
p
j 1 jc 1=∑ =  i.e. 

the above polynomial is a “probability- type” polynomial or chance 
polynomial as a function of ‘a’.

Proof: Since m(m 1)a
2
+

=  and (2p 1) 2 3 p 1
1 2 ph (m) c a c a ... c a+ += + + +

it is clear that
(2p 1)

1 2 ph (1) c c ... c+ = + + +

Thus, by the above Lemma,

1 2 pc c ... c 1+ + + =    Q.E.D.

Remark: We realize that for various values of “s”, the coefficients of 
polynomials (s){h (.)} constitute “interesting” “chance” mass functions 
corresponding to discrete chance/random variables (assuming integer 
values) [9]. We expect these “chance” mass functions to naturally arise 
in applications such as physics, chemistry etc (in the spirit of Fermi-
Dirac statistics, Bose- Einstein statistics etc.)

For instance, we can compute the ‘entropy’ of the above ‘interesting’ 
probability/chance mass functions when the coefficients of Faulhaber 
polynomials are all non-negative.

Consider the value of “s” to be 1,2, 3. It is easy to see that the 
entropy values are

1 2 2

(2)
2 2 2 2 2

(3)
2 2 2

1 1H(1)(X ) log 2 log 2 1bit
2 2
1 1 1 4 1H (X ) log 3 log 2 log 6 log 3
3 2 6 6 2

1 1 1H (3) log 4 log 2 log 4 2bits.
4 2 4

= + =

= + + = +

= + + =

Remark

It should be noted that the Shannon entropy cannot be defined in 
the case where some of the chances assume negative values. But other 
entropy definitions such as Tsallis entropy could be defined. To be 
more exact Tsallis proposed an entropy measure which in the case of a 

discrete random variable is given by

q
q x

1s (p) (1 (p(x)) ).
q 1

= −∑
−

Thus, it is clear that when q=2, Tsallis entropy could be defined for 
chance mass functions of a discrete chance variable. More generally for 
all even integer values of ‘q’, Tsallis entropy of chance mass functions 
can be defined. It will be interesting to see if the Tsallis entropy of 
chance mass functions associated with the Faulhaber polynomials 

(s){h (.) for s 4}≥  is strictly increasing (and thus can be interpreted in 
the spirit of second law of Thermodynamics).

In view of the fact that probability/chance polynomials are 
associated with ShannonTsallis entropy (based on the coefficients), we 
are naturally led to the following discussion.

• Every polynomial with non-negative coefficients, can be divided 
by the sum of coefficients (non-zero sum) to arrive at a probability 
polynomial (without affecting the zeroes of the polynomial)

• Every polynomial with arbitrary (negative as well as positive) 
coefficients, can be divided by the sum of coefficients (assumed to 
be non-zero) to arrive at a chance/probability polynomial (without 
affecting the zeroes of the polynomial).

• Consider a finite set of non-negative elements i.e. 
1 2 NA {x , x ,...x }=  Divide each of the elements by the sum of all 

elements in A. i.e. define

i
i N

jj 1

xp for1 i N.
x

=

= ≤ ≤
∑

It is evident that ip s are probabilities′  Thus Shannon entropy of set 
A can be defined as 

N
i 2 ii 1

H(A) p log p
=

== −∑
Such an entropy measure quantifies, how different are the elements 

of the finite set from the constant value (i.e. different from a uniform 
probability mass function).

Remark: The generalization of above definition for a countable set 
with non-negative elements can easily be made when the sum of all 
elements converges to a non-negative value 

• If the elements of set A are allowed to assume negative values, 
then the normalized absolute value of the elements i.e.

i
i N

j 1 j

| x |p for1 i N
| x |=

= ≤ ≤
∑

can be utilized to compute the Shannon entropy (of the associated 
probability mass function). We call such an entropy as. L1–Shannon 
entropy

• More generally, PL − Shannon entropy of a finite set (with 
possibly negative elements) is based on the following normalization:

p
i

i N p
j 1 j

(| x |)p for1 i N
(| x |)=

= ≤ ≤
∑

The above approach can be generalized to countable sets in a 
straightforward manner.

Remark: Other types of entropy such as Tsallis/Renyii entropy of 
finitecountable sets are defined based on suitable normalization.
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Definition: Every polynomial whose coefficients are all positive 
and are all equal to the same constant can be normalized to arrive at a 
“maximum Shannon entropy” polynomial.

• For instance, every cyclotomic polynomial constitute maximum 
entropy polynomial.

• Lemma 4.2: Faulhaber polynomials (s){h (.)}  are probability 
polynomials only for s = 1,2,3 and they are all probability-type 
polynomials for s 4≥  Thus, there are infinitely many Faulhaber 
polynomials that are chance polynomials (probability-type 
polynomials).

Proof: It is well known that the following expression for Faulhaber 
polynomials holds true.

n p p j(p) p p j 1
jk 1 j 0

B
h (n) k ( ) n

j 1
− +

= =
=

+∑ ∑
Where Bj s′  are Bernoulli numbers.

For p=1, 2, 3, we have the following expressions:

(1) 2n(n 1) 1 1h (n) n n
2 2 2
+

= = +

(2) 3 2n(n 1)(2n 1) 1 1 1h (n) n n n
6 3 2 6

+ +
= = + +

2
(3) 4 3 2n (n 1) 1 1 1h (n) n n n

4 4 2 4
+

= = + +

Thus, the above three polynomials are pure “probability” 
polynomials. For p =4. We have the following expression.

4 4 j(3) 4 j 1 2 3 4 5o
j 4 3 2 1j 0

B Bh (n) ( ) n B n 2B n 2B n B n n
j 1 5

− +
=

= = + + + +
+∑

Substituting for the Bernoulli numbers, we have the following

(4) 3 4 51 1 1 1h (n) n n n n
30 3 2 5

= − + + +

Thus, since the Bernoulli number 4B  is a negative real number, 
(4)h (n)  is a probability type (chance) polynomial and not a probability 

polynomial. Now let us consider p 5≥

Since, p
j

1( )
j 1+  is a positive real number for all integer values 

of {p, j} and Bernoulli numbers 
4 8{B ,B ...}  etc are all negative 

real numbers, for all p 4≥  the Faulhaber polynomials (p){h (n)}  

constitute probability type (chance) polynomials (and not probability 
polynomials). 

• Thus, there are infinitely many Faulhaber polynomials that are 
chance polynomials Q.E.D.

Note

It can be easily shown that there are infinitely (countable) many 
Bernoulli numbers that are negative real numbers. Also, there are 
countably many positive Bernoulli numbers. Thus, positive and negative 
valued Bernoulli numbers can be put in one-to-one correspondence 
with the set of all natural numbers (positive and negative valued).

• From the Formula for Faulhaber polynomials, the following facts 
can readily be derived 

• For all values of ‘p’, coefficient of p 1 p 0
p

B 1n ( )
p 1 p 1

+ = =
+ +

 

• For all values of ‘p’, coefficient of p p 1
p 1

B 1n ( )
p 2−= =

• For all values of ‘p’, coefficient of pn B=  Thus, if ‘p’ is odd, the 
coefficient of ‘n’ is zero. More generally,

p jp j 1
j p j

B
( ) n 0if and only if B 0

j 1
− +

−= =
+

Also,

p jp
j p j

B
( ) 0if and only if B 0

j 1
−

−< <
+

• For all values of ‘p’, coefficient of 
2

p 1
pn B
2 −=  Thus, if ‘p is an even 

number greater than or equal to 4, then coefficient of n2 is zero.

• From the Faulhaber formula, we also have that

p j p 1
j j 1j 0

1( 1) ( )B (p 1) with B
2

+
+

− = + = −∑
• For all integer values of ‘p’, we have that

p
2p 2 2q p 1 q 2p 2

2q 2q
q 0

( )(2 2 ) B [9 1] 2 (2p 2)+ + − +

=

− − = +∑
• Lemma 4.3: Let the Bernoulli polynomial for integer ‘p’ be 

denoted by p pB (x) and let b  denote the Bernoulli number. The 
following identity is satisfied for all values of ‘p’.

p 1 p 1B (2) (p 1) b+ += + +

Also, for even values of ‘p’ we have that

p 1B (2) (p 1)+ = +

Proof:

The following expression relating Faulhaber polynomials and 
Bernoulli polynomials is well known:

p p 1 p 1(p) p
k 1

B (x 1) b
h (x) k

p 1
+ +

=

+ −
= =

+∑
Rearranging the equation, we have that

(p)
p 1 p 1B (x 1) (p 1) h (x) b+ ++ = + +

From Theorem 4.1, we note that Faulhaber polynomial is either a 
probability polynomial or probability-type polynomial i.e. (p)h (1) 1=  
hence, we readily have that for all values of ‘p’

p 1 p 1B (2) (p 1) b+ += + +

Also, it is well known that the all odd Bernoulli numbers are zero. 
Hence, we readily have that for even values of ‘p’, 

p 1B (2) (p 1)+ = +

• Lemma 4.4: The product of any two chance/probability 
polynomials corresponding to the above sums (i) (i)({h (m)}.{h (n)})  is 
another chance/probability polynomial [Rama3].

Proof: Let (i) (j)k(m,n) ({h (m)}{h (n)})=

It is well known that coefficients of the resulting polynomial 
(i.e. the product polynomial) are the convolution of the coefficients 
corresponding to the two chances/probability polynomials
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(i) (j)k(1,1) h (1) h (1) (1)(1) 1= = =

Also the same result holds true if m=n.

Corollary: If a probability/chance polynomial (in unknown ‘n’) 
can be expressed as the product of two polynomials and one of them 
is a probability/chance polynomial, then the other is also a probability/
chance polynomial.

Remark: The above Lemma shows that the product of finitely 
many chance/probability polynomials is another chance/probability 
polynomial. Thus this class of polynomials is closed under 
multiplication.

Remark: In view of Lemma 4.4, we realize that higher powers 

of first three Faulhaber polynomials i.e. (j){h (m) :1 j 3}≤ ≤  are also 

probability polynomials. Specifically, we first consider higher powers of 

first Faulhaber polynomial i.e. (1) m(m 1)h (m)
2
+

=  The following result 
readily follows:

Lemma 4.5: The “k”th power of (1)h (m)  (for k 2≥ ) constitutes 
a probability polynomial, whose coefficients constitute a Binomial 

probability mass function i.e. binomial 
1(k, )
2  Thus, it also follows that 

“k”th power of (3)h (m) (for k 2)≥  constitutes a probability polynomial 

whose coefficients constitute Binomial 1(2k, )
2

 

Proof: 
k k(1) k k k k j k k j

j jk j k jj 0 j 0

m(m 1) 1 1 1[h (m)] [ ] ( )m ( )( )( ) m
2 2 2 2

+ +
−= =

+
= = =∑ ∑

Thus (1) k[h (m)]  (‘k’ fold product of sum of first ‘m’ integers) is a 
probability polynomial, whose coefficients constitute a Binomial 
probability mass function i.e. Binomial 1(k, )

2
 

Since (3) (1) 2h (m) [h (m)]=  it follows that “k”th power of (3)h (m)  
constitutes a probability polynomial whose coefficients constitute 

Binomial 
1(2k, )
2  

In view of the above lemma, it will be interesting to interpret the 
higher powers of probability polynomials (2)h (m)  Also it is interesting 
to understand whether the Shannon entropy of such probability 
polynomials is increasing/decreasing with “k”. 

• It is easy to see that
m m m m

(r) (s) r s r s

j 1 k 1 j 1 k 1
[h (m)][h (m)] [ j ][ k ] j k

= = = =

= =∑ ∑ ∑∑
The above expression is reminiscent of similar expression in 

Eisenstein series and its generalization by Ramanujan. Specifically, 
Eisenstein series are special cases of Ramanujan’s more general 
function [1,6].

r s kn
n 1k 1r,s(q) k n q∞∞
==ϕ = ∑∑

where ‘r’ and ‘s’ are non-negative integers. Trivially r,s(q) r,s(q)ϕ =ϕ  
We are naturally led to the study of finite version of the above function.

r s knMM
n 1k 1r,s(q) (r,s,q,M)k n q==ϕ = ϕ=∑∑

Suppose {r, s}  are considered to be constants. Then (r,s,q,M)ϕ  
a bi-variate polynomial (function) in {q, M}  It is easy to see that 

r sM (r) (s)M
n 1k 1q 1(r,s,q,M)| k n [h (m)][h (m)]===φ = =∑∑  Thus, as 

a bi-variate polynomial, it is a Probability Chance Polynomial i.e. 
coefficients are probabilities/chances.

Probability/Chance theoretic interpretation of probability/
Chance polynomials: random/chance fields

Consider a collection of discrete random/chance variables, 
assuming integer values be denoted by m m 1{X }∞=  As in the case of 
Faulhaber polynomials, we have a collection of marginal probability/
chance mass functions associated with this collection of independent 
random/chance variables. We associate the following transformed 
collection of random/chance variables:

Xm
mY (n) n=  for 1 m≤ ≤ ∞  where n is a deterministic variable. 

We consider the expected value of the new random/chance 
variables i.e. mE(Y )(n)  Specifically in the case of Faulhaber sums, it is 
easy to see that 

nh m
m k 1

E(Y ) (m)(n)(n) k
=

= =∑
Thus, in the case of Faulhaber sums, we have the expectation of 

an infinite collection of random/chance variables (i.e. we have the 
associated random/chance process). Also, since mX s  are independent 
random/chance variables, it is easy to see that 

r s r sE(Y ) E(Y ) E(Y )(n) Y (n) (n) (n)=

Note

 In this computation of expectation, we use the fact that the 
probability/chance mass function of sum of two independent random/
chance variables is the convolution of their individual probability/
chance mass functions.

• Also, if the value of ‘m’ is fixed and the variable (like the 
discrete time parameter) ‘n’ is increased, we have a countably infinite 
collection of random/chance variables that are independent (i.e. we 
have a random/chance process). For instance in the case of ‘m=1’, the 
random variable mX  assumes the values 2{m , m}  with the associated 

probabilities 1 1
{ }

2 2
,  As ‘n’ is increased this probability mass function is 

constant.

•  Thus, as ‘m’, ’n’ are varied, we have a bi-variate random/chance 
process or also denoted as a ‘random/chance field’. Specifically, the 
collection of Faulhaber polynomials correspond to the expected values 
of the random/chance variables belonging to the random field. Other 
moments can easily be computed. It is expected that this probability/
chance theoretic interpretation can have associated explanation from 
physics/chemistry view point.

•  The polynomial (s){h (m)}  can also be interpreted as the expectation 
of a discrete chance/random variable assuming higher powers of “m” 
with chances/probabilities corresponding to the coefficients (of the 
probability polynomial). Thus various results from probability/chance 
theory can be invoked in association with the above polynomials.

In view of the above discussion, we are naturally motivated to 
arrive at the following generalization:

Definition: A power series is defined to be a “probabilistic power 
series” if all the coefficients are non-negative and their sum converges 
to one.
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Definition: A power series is defined to be a “chance power series” 
if some of the coefficients are negative and their sum converges to one.

Consider a discrete random variable, W which assumes non-
negative integer values with the associated probability/chance mass 
function. Define the associated random variable

wZ x=  where x is a deterministic variable.

It is easy to see that the expection of the random variable Z is a 
probability/Chance power series.

• Algebra of Faulhaber Polynomials

It is well known that for ‘odd’ values of ‘p’, the Faulhaber 
polynomial has factors 2 2n and (n 1)+  Also, for even values of ‘p’, 

Faulhaber polynomial has factors ‘n’ , (n 1)+  and 
1

(n )
2

+  Thus the 

following hold true:

• When any (even or odd) Faulhaber polynomial is divided by 
(1) n(n 1)

h (n)
2
+

=  then the remainder is zero and the quotient is a 

probability/chance polynomial.

• When the Faulhaber polynomial for even values of ‘p’ is divided 

by 
1

n(n 1)(n )
2

+ +  then the remainder is a zero and the quotient is a 

polynomial whose coefficients add upto 1
3

• Sum of Pairwise, Triplewise Products of Consecutive Integers: 
Polynomial Expressions

It is easy to see that the following formula can be derived. 
n n

2 2 2 2

i 1 j 1
(i)(j) (1 2 ... n) (1 2 ... n )

= =

= + + + − + + +∑∑
4 3 2

(1) 2 (2)3n 2n 3n 2n
12

[h (n)] h (n)+ − −
= = −

6 5 3 2n n n
3 3 3 3 (1) 3 (3)

i 1 j 1 k 1

n 3n 3n 2n
4

(k)(i)(j) (1 2 ... n) (1 2 ... n ) [h (n)] h (n)
= = =

+ −+
= + + + − + + + = = −∑∑∑

i j k≠ ≠

• In the spirit of the above sums, we now arrive at the most general 
case. It is not clear why such expressions should be polynomials. The 
following reasoning shows that they are infact polynomials.

1 2 p

n n n
p p p p (1) p (p)

1 2 p
i 1 i 1 i 1

(i )(i )...(i ) (1 2 ... n) (1 2 ... n ) [h (n)] h (n)
= = =

= + + + − + + + = −∑∑∑

1 2 pi i ...i≠ ≠

It is easy to reason that the above expression represents a 
polynomial (for fixed ‘p’ and variable ‘n’), the sum of whose coefficients 
is zero. Let us name label such polynomials as “Zero Polynomials”. In 
view of such polynomials, the following Lemma is interesting.

Lemma 4.6: “Zero” polynomials with the coefficients from the field 
of real numbers form a “ring” (as an algebraic structure)

Proof: Follows from the verification of axioms of a ring. Q.E.D

• Using a similar reasoning, it can be shown that the sum of 
pairwise, triplewise etc products of consecutive integers (for fixed ‘p’) 
constitute “zero” polynomials in the variable ‘n’.

• Using the above and similar formulae, congruence properties of 

products of first ‘n’ integers etc can be derived.

Goal: To study the properties of above chance/probability 
polynomials and other polynomials naturally derived from them.

• It is easy to derive the following identities
3 2M

(1)

n 1

M 3M 2M
6

M(M 1)(M 2)h (n)
6=

+ ++ +
= =∑

Also, it is easy to see the above function is a probability polynomial.

2M
(2)

n 1

M(M 1)(M 3M 2)
12

h (n)
=

+ + +
=∑

Once again the resulting function is a probability polynomial.

• From the expressions for (s){h }(m)  for various values of ‘s’, it is 
easy to see that { 0 , -1 } are the common zeros of all the polynomials. 
Thus, we are motivated to define the following function:

n s
i 1

g(s, n) i
=

= ∑
where ‘n’ assumes integer values only but ‘s’ could be arbitrary real/
complex number. It is easy to see that sg(s, n 1) g(s, n) (n 1)+ = + +

Thus, by mathematical induction on ‘n’, it is easy to reason that {0, 
-1} are zeros of the above function.

• One interesting goal is to determine whether the zeros correspond 
to a “soluble group” and thus understand the geometry of zeros.

• In the case of the function g(s,n), allowing {n, s} to be arbitrary 
complex numbers leads to the study of a function of two complex 
numbers.

• Probability/Chance Polynomials: Electrical Network Theory: 
It should be noted that the first three Faulhaber polynomials are 
probability polynomials and all others are probability type polynomials 
(chance polynomials). First three probability polynomials encountered 
above (with the sums considered) have zeroes in the left half s-plane 
only with a zero at location “zero” in s-plane. Such polynomials arise 
naturally in the case of electrical networks (and also stable linear time 
invariant systems). In fact “positive real functions” are well studied in 
network theory.

• Remark

 Every polynomial with non-negative coefficients can be normalized 
to arrive at probability polynomial without affecting the zeroes (i.e. 
both polynomials have same set of zeroes). Also every probability 
polynomial with strictly positive coefficients cannot have real zeroes on 
the positive real axis. If some coefficients of a probability polynomial 
are zeroes, then the polynomial is unstable in the sense of Routh’s 
stability test.

• The class of all polynomials can be divided into the following 
classes:

(A)	 Polynomials which are such that the sum of all coefficients is 
zero. We call them “Zero polynomials"

(B)	 Polynomials which are such that the sum of all coefficients is 
a non-zero quantity.

Remark

 Polynomials in the above class (B) can be normalized to arrive at 
a chance polynomial (realcomplex valued chances) without affecting 
the zeroes.
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• In the following discussion (in this subsection), we consider 
polynomials that donot have a zero at the origin (i.e. n=0). If a zero 
exists at origin it is factored out.

• Lemma 4.7: For p 4≥  Faulhaber polynomials (p)h (n)  have zeroes 
in the right half s-plane and are thus unstable in the sense of Routh’s 
stability test 

• Proof: It is well known that a necessary but not sufficient 
condition for a polynomial to have zeroes in the left half s-plane is that 
all the coefficients of the polynomial be present and all of them have 
positive sign (in the presence of atleast one positive coefficient). Thus, 
using Lemma 4.2, it is clear that the Faulhaber polynomials (p){h }(n)  
for p 4≥  contain zeroes at the origin are well as right half s-plane. In 
the sense of Routh’s stability test they unstable polynomials. Applying 
Routh’s stability test on various Faulhaber polynomials, the number of 
zeroes in the right half plane could be determined. Q.E.D.

Note: All strictly chance polynomials are unstable in the sense of 
Routh’s stability test.

• Multi-Variate Chance/Probability Polynomials

Based on the above discussion, we are naturally led to the following 
definition.

Definition: A homogeneous/non-homogeneous, seperable/ 
nonseperable multi-variate probability polynomial is one where all the 
coefficients are non-negative and the sum of all the coefficients is one. 
It is a “chance” polynomial when some coefficients are negative, but the 
sum of them is one.

Example: We now provide a seperable, non-homogeneous 
bivariate probability polynomial which naturally arises in connection 
with the above sums.

m n m n
(r) (s) r s r s

j 1 k 1 j 1 k 1
[h (m)][h (n)] [ ][ ]j k j k

= = = =

= =∑ ∑ ∑∑
• Goal: To study properties of Uni/Multi-Variate, seperable/

nonseperable, homogeneous/non-homogeneous probability/chance 
polynomials. Of particular interest are the probability/chance quadratic 
forms.

• In view of the definition of probability/chance polynomials, we 
are naturally led to the following definitions. We only consider chance 
polynomials keeping in mind that similar definitions hold true for 
probability polynomials:

Definition: A polynomial is called “Sub-Chance Polynomial” when 
the sum of all of its coefficients is smaller than one.

Definition: A polynomial is called “Super-Chance Polynomial” 
when the sum of all of its coefficients is greater than one.

It is easy to see that the product of finitely many sub-chancesuper 
chance polynomials is a sub-chancesuper chance polynomial.

• Novel Power Series based on Faulhaber—Type Sums

In the above discussion, we studied some properties of Faulhaber 
polynomials. Now, we propose a power series in variable ‘x’, whose 
coefficients constitute Faulhaber polynomials in M i.e. (p)h (M)  integer 
values of ‘p’.

Consider the following power series:
1 1 1

g(x)
1 x 1 2x 1 Mx

...=
− − −

+ + +

with ‘M’ being an integer. In the Region of Convergence (ROC) i.e. 
{x :| x | 1}> , the corresponding coefficient sequence constitutes a 
right-sided/causal sequence. It is easy to see that

(p) p
p 1

g(x) 1 h (M) x∞

=
= +∑  where

M(p) p
n 1

h (M) n
=

=∑  i.e. Faulhaber sum.

• The above power series naturally motivates the study of power 
series in variable ‘x’ whose coefficients are interesting structured 
polynomials. For instance, the coefficients constitute arbitrary 
probability/chance polynomials, [4].

• As a natural generalization, we consider the following power 
series in ‘x’:

1 2 M

1 1 1
1 e x 1 e x 1 e x

...
− − −

+ + +  where

i{e }  are consecutive integers i.e. i 1 ie e 1+ = +

Once again the coefficient sequence can be expressed in terms of 
Faulhaber sums i.e.

M p (p) (p)
j M 1j 1

e h (e ) h (e 1)
=

= − −∑
Thus, the coefficients are the difference of two Faulhaber 

polynomials. Hence the sum of coefficients of such polynomials is zero.

• In the spirit of the above discussion, it is only natural to consider 
a power series in ‘x’ whose coefficients are ratio of two structured 
polynomials (say probability/chance polynomials) as in the case of 
hyper-geometric series.

• Now let us consider another power series:

1 1 1
g(x)

x x1 x 1 1
2 M

...=
− − −

+ + +

with the associated Region of Convergence (ROC) {x :| x | M}>  In 
the ROC, the coefficient sequence constitutes a right sided sequence. 
It is easy to see that

(p) p
p 1

g(x) 1 (M) x∞

=
= + ϕ∑  where 

M(p)
pn 1

1(M)
n=

ϕ =∑
i.e truncated Euler Sum as in Zeta function

• Now consider a power series of the following form:
1

k(x)
(1 x)(1 2x)...(1 Mx)

=
− − −

 with ROC {x :| x | 1}>

By partial fraction expansion method, K(x) can be written as

1 2 Mc c c
k(x)

1 x 1 2x 1 Mx
...=

− − −
+ + +

The constants i.e. {ci} scan easily be evaluated (as the poles are 
simple and distinct). Also the coefficient sequence of K(x) are easily 
related to the Faulhaber-type sums.

• Alternatively, by a suitable choice of constants i.e. {di}s in the 

following power series 1 2 Md d d
1 x 1 2x 1 Mx

...
− − −

+ + +
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various interesting Faulhaber-type sums can be obtained as the 
coefficient sequence (of the associated power series).

5. Theory of L1 Chances: Stochastic Chains
In the technical report [9] and the research paper [10], the author 

formalized the theory of chances. In those research works, L2p- E" 
chances were formalized in detail. Also stochastic chains based on such 
chances were formalized.

In the following, we specifically discuss L1-E" chances and the 
stochastic chains based on them.

• For the sake of concreteness, we consider the case where the 
cardinality of space of outcomes is finite. Let it be denoted by α
Also, let the collection of subsets of α  be denoted by β  Also, let 
γ  be the “chance measure”. These entities satisfy the following: 

AUB, where A B andα = ∩ =∅

(w) 0for w A,
(w) 0for w B,
γ ≥ ∈
γ ≤ ∈  

Also, for all w, (w) [ 1,1]γ ∈ − .

Furthermore

w
(w) 1

∈α
γ =∑

The chance measure of any set, C in β  is computed in the following 

manner i.e. 
w c

(c) (w)
∈

γ = γ∑
• The above condition (6.1) leads to the following classification of 

L1- chances

Type-A L1- chances: For all w , (w) [ 1,1]∈α γ ∈ −  For instance, 
it can be shown that the coefficients of Faulhaber polynomials 

n(p) p
k 1

h (n) k
=

=∑ for  p>3.

Type-B L1- chances: For some w ,| (w) | 1∈α γ >  Specifically the 
L1- chances value is negative for some ‘w’ and greater than -1. But 

w (w) 1∈αγ =∑
For instance, in section (4), we realized that (s)h (m)  for odd values 

of “s” can be expressed as a polynomial in ‘a’,

Where
m(2p 1) 2 3 p 1

1 2 pk 1

m(m 1)h (m) k(2p 1) c a c a ... c a and a
2

+ +
=

+
= + = + + + =∑

It can be seen that as a polynomial in ‘a’, the coefficients of 
(2p 1)h (m)+  constitute “Type-B” L1- chances For instance, we have that

m(7) (7) 4 3 2
k 1

4 1h (m) k 2a a a
3 3=

= = − +∑
• The concepts such as conditional chance, independence etc are 

consistently defined. Thus an effort is made to develop a consistent theory 
of chances where the space of outcome has finitecountableuncountable 
number of outcomes.

• Also joint/marginal chance variables are defined like random 
variables. In the case of discrete chance variables, there is an associated 
chance mass function. For instance, let us consider few examples that 
are parallels of probability mass functions (of certain classical random 
variables):

(A) Bernoulli--Type Chance Variable: Consider an experiment in 
which there are only two possible outcomes i.e. 1 2{w , w }α =

Let 1 2(w ) q and (w ) 1 q with q 0γ = γ = − <

It should be noted that we can have Type (A) or Type (B) chances. 
The above provides the chance mass function of Bernoulli chance 
variable.

(B) Binomial Chance Variable, Y: Consider the following chance 
mass function (with C i i(Y w ) (w )= = γ  denoting the chance of the 
outcome iw ) . Let there be M possible outcomes

M j M j
j J(w ) ( )(q) (1 q) with q 0−γ = − <

Once again we can have Type (A) or Type (B) chances.

(C) Geometric Chance Variable: Consider an experiment with 
countably many outcomes. The following chance mass function 
corresponds to a geometric chance variable:

j
j(w ) (q) (1 q) with q 0for 0 j .γ = − < ≤ < ∞

In this case, we are restricted to Type (A) chances.

(D) Poisson Chance Variable: Once again consider an experiment 
with countably many outcomes. The Poisson chance mass function is 
given by

j

j
e(w ) with 0

j!

−µµ
γ = µ <

Also in the case of continuous chance variables there is an associated 
chance density function.

Remark: Any finite/infinite sequence of real numbers (positive as 
well as negative valued) which can be normalized to sum (converge) to 
one, constitutes a Chance Mass Function. As in the random variable 
case, certain chance mass functions find many applications in science 
and technology.

Stable Continuous Time Linear Time Invariant Systems: Chance 
Density Functions

• Suppose we consider a chance space which consists of 
uncountable number of outcomes. In such a case we are naturally led 
to consider the chance density function. Once again, it is clear that 
such a function can assume negative values, but must be integrable. In 
this connection, we realize that the impulse response of a Continuous 
Time (CT), Linear Time Invariant (LTI) system must be integrable. If 
we consider the Laplace transform of such a function (i.e the transfer 
function of a CT LTI system), we are naturally led to consider the 
special case of systems with rational transfer functions. It is well known 
that the impulse response of stable CT LTI system (whose Laplace 
transform is a rational function) is integrable and hence all the poles 
of the transfer function lie in the left half s-plane. Thus such impulse 
response functions constitute Chance Density Functions. Hence many 
interesting examples of chance density functions can be specified by 
considering stable LTI systems.

• It is interesting to note that the rational transfer functions all of 
whose poles lie on the negative real axis, lead to interesting examples 
of Chance Density Functions (i.e. linear combination of decaying 
exponential signals). This class of chance density functions are defined 
in the same spirit of the family of Erlang distributions.

• Any real valued function (not necessarily non-negative) whose 
integral is finite can be normalized to arrive at a chance density.
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• As in the case of stochastic processes in probability theory, we 
define a “chance process” to be a “countable/uncountable” collection 
of “chance variables” (like random variables) indexed by the “time” 
parameter. Similarly “chance” fields are defined.

• Stochastic chains in the spirit of Markov chains (based on 2pL
chances) are discussed in [9]. In the following, we briefly discuss 
stochastic chains based on 1L  chances. Detailed discussion is based on 
the ideas documented in [9].

Definition: A state transition chance matrix, C is defined as one 
where the elements can be negative/zero/positive assuming values in 
the interval [ -1,1 ] and the row sums are all equal to one. The matrix 
can be finite dimensional or infinite dimensional. For instance, the 
following matrix is a state transition chance matrix of a stochastic chain 
satisfying Markovian type property.

0.6 0.8 0.4
C 0.3 0.2 0.9

0.5 0.8 0.7

− 
 = − 
 − 

Now we consider a finite dimensional “chance matrix”, C leading 
to the definition of a “chance process”. In this case the chance process is 
a stochastic chain in the spirit of a Discrete Time Markov chain. 

(1) Let ( )n jϑ  denote the chance that the Discrete Time stochastic 
chain is in the state ‘j’ at time ‘n’. Also let nϑ denote the row vector 
of chances that the process is in one of the states. Since the stochastic 
chain satisfies the Markovian type property, we have that

1+ =n nv v C  for 0n ≥

Let ê  denote a column vector of ‘ones’. By definition of C, we have

Cê ê=

(2) Thus, one of the eigenvalues of state transition chance matrix, 
C is “one”. Also, it is easy to see that the product of any two chance 
matrices is another chance matrix. Also higher powers of a chance 
matrix is another chance matrix.

Lemma 5.1:

Suppose the state transition chance matrix C is diagonalizable and 
has spectral radius ‘one’. Then the limiting equilibrium chance mass 
function (equilibrium chance distribution) exists and is given by the 
left eigenvector corresponding to eigenvalue ‘one’ of the matrix C.

Proof: Since C is diagonalizable, we have that                                     

1
^ ^M

i i ii
C f gµ

=
=∑   where ^ ^i if g  are the left, right eigenvectors of C 

corresponding to the eigen value iµ  respectively. 

Since spectral radius is one ( i.e. all the eigenvalues other than ‘one’ 
are strictly inside the unit  circle ), we have that^

( )1 1lim 0 ^nn
f eϑ ϑ+→∞

=

Where 1^ f , e are the left, right eigenvector of C corresponding to 
the eigen value one respectively.

Thus, we have that 1 1lim nn
fϑ +→∞

=

Thus, the equilibrium chance vector is the left eigenvector of C 
corresponding to the eigenvalue one of C. 

Note: The proof could be generalized for non-diagonalizable 1L - 
chance matrices with spectral radius one. 

Complex Valued 1L . Chances

In [9], we have discussed the idea that L2p chances can be complex 
valued. In fact novel stochastic chains based on such complex valued 
chances are discussed. Now we consider the case of L1 - chance complex 
valued chances. In other words chances associated with outcomes are 
complex valued, lie within the unit circle and the sum of all chances is 
equal to one. Naturally, we are motivated to consider the state transition 
chance matrix with 1L - chances along the rows i.e. components of the 
matrix are complex valued, lie in the unit circle and along all the rows 
they add upto one. As in the real valued chance case, under reasonable 
assumptions existence and uniqueness of equilibrium chance mass 
function (chance distribution) is established.

Mathematicians developed structures such as quaternions, 
octanions generalizing the idea of field of complex numbers. Logically, 
it should be possible to allow the chances to be quaternions, octanions.

Motivation for Alternative Theories of Uncertainity

Consider a space of outcomes α , which contains finitely many 
outcomes. In classical/modern probability theory, the “probability” of 
an outcome lies in the interval [0,1] and the sum of probabilities of 
all outcomes is one. In the above section, we considered an alternative 
theory of uncertainity i.e. “theory of chances”.

Suppose we now consider the most general scenario. The chances in 
the space of outcomes are such that the sum of chances of all outcomes 
assumes two possible values:

(i) zero value and 

(ii) Non-zero value not necessarily equal to one.

Theory of Balanced Chances [9]

In the above discussion and [9], we allowed the chances ( 2 pL
chances , 1L chances ) to assume negative values as well as complex 
(numbered) values unlike probabilities. Also, in the case of finite/
countable number of outcomes, the associated chances are assumed to 
sum to one (as in the case of probabilities). We now consider the case 
where the space of outcomes is finite.

But in this case, the chances of all possible outcomes (lie within 
the interval [ ]1,  1− in the real case and in the unit circle in the complex 
numbered case) add upto “zero”. Thus, the chance of outcomes assume 
positive as well as negative values. We call such chances “Balanced 
Chances”. In summary, real valued (positive or negative valued) 
or complex valued chances of all possible outcomes add upto zero.

min min min max{ , 1, 2,... }f f f f f∈ + +

Theory of Symmetric Balanced Chances

In this theory we have a special case where for every outcome with 
“positive” chance, there is a corresponding outcome with chance that 
is equal to it in magnitude but opposite in polarity ( i.e. outcome with 
negative chance).

•	 In the case where the number of outcomes is countable (and 
not finite) the sum of chances of all outcomes (possibly negative or 
complex valued) converges to a zero value.

Dichotomy of Absolutely Summable Sequences

Suppose a function of single variable is integrable. The value of 
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integral is either zero or non-zero. It is easy to see that if the value of 
integral is non-zero, then the function can be normalized to arrive at 
a chance density function (by dividing the function with the non-zero 
value of the integral).

Note: We considered certain bounded infinite sequences/
functions whose associated infinite series sum/integral is infinity (i.e. 
they diverge/are non integrable). In [13], it is shown that such infinite 
sequences/functions can be “modified” to arrive at the associated 
infinite series/integral that are convergent/integrable. Thus, we can 
associate such sequences/functions with “chance spaces”/“probability 
spaces” (associated chance/probability mass functions or “chance/
probability density functions”).

When the space of outcomes contains uncountably many outcomes, 
the “balanced” chance density is integrable and the integral is equal 
to zero. Naturally, we consider the state transition balanced chance 
matrix with 1 balanced chancesL −  along the rows i.e. components 
of the matrix are realcomplex valued (each of them lie in the interval 
[ ]1,  1− in the real case and within the unit circle in the complex case) 
and along the rows they add upto one. As in the case of real/ complex 
valued ordinary 1L chances , with 1 balanced chancesL − under 
reasonable assumptions, existence and uniqueness of equilibrium 
chance mass function is established.

An Application of the Theory of Chances: Graph Theory

In [11], the author defined a probability mass function on the 
vertices of a graph. The definition involves normalization of the vertex 
degree distribution. It is given by:

degree of i
sum of degrees of all vertices of graph

=
th vertext

ip    for 1 i M≤ ≤  

(Vertex set V)

Using this probability mass function, the author associated 
Shannon entropy with the graph i.e. 1, 2( ..., )MH p p p .

Motivated by the above idea, in the following, we consider a 

directed, weighted graph. Degree of thi vertex=In Degree of Vertex 
( )i

inV  -Out Degree of Vertex ( ) ^i
out iV V=

Suppose, we consider graphs for which
( ) ( )( ) 0i i

in outi V
D V V

∈
= − ≠∑

Now, we normalize îV   by D for 1 i M≤ ≤ i.e. 

 
^

= i
i

vq
D

 for 1 i M≤ ≤

It is easy to see that {q1,q2,…qm} is a “chance mass function” and 
not necessarily a probability mass function (since the out degree of a 
vertex can be larger than the in degree of a matrix). The case where D 
equals zero is considered in [12]. As discussed above, let us consider 
a weighted, directed graph. As in the case of [11], the weights are 
normalized i.e. 



1

^

=

= =

∑
ij ij

ij M
i

ij
j

W W
W

EW

It should be noted that in the above equation, ^ ijW s can assume 
negative values (more generally values can be complex numbers). 
Under the assumption that 0− ≠EC for all i  the matrix of normalized 
weights i.e. { }ijW  is a state transition chance matrix. Thus, a stochastic 

(chance) chain is naturally defined based onsuch a matrix (as in the 
case of a Discrete Time Markov chain associated with the graph when 
all the weights are non-negative). Such a stochastic chain (in the spirit 
of Markov Chain) is naturally associated with a weighted, directed 
graph in which the weights can assume negative values.

•	 Detailed development of “theory of chances” is based on the 
work documented in [Rama3].

•	 Note: It should be noted that chance/probability spaces 
with finite/countable number of outcomes are naturally associated 
with polynomials/power series. Also they are naturally associated with 
finite/infinite dimensional vector spaces.

6. Theory of Random Sets (based on random 
intervals) and Theory of Granular Sets: Novel Models 
of Uncertainity

Based on our results dealing with theory of chances, we are 
naturally led to the following question:

Q: Can the measure of an interval or more generally a subset of real 
line be a random variable?

Based on very practical considerations (in sensor fusion), we are led 
to the answer that such a thing can happen. Let us consider a collection 
of ‘M’ sensors measuring temperature (or some other variable based on 
some physical phenomena). Let the crisp measurements measured by 
the sensors be 1 2{ , ..., }Mx x x  Since the sensors are not absolutely sure 
of the recorded value, a “tolerance’ is added on the left side as well as 
right side. In the simplest case, the tolerance value is deterministic, say 
‘T”. It is also the same on the left side and the right side of the crisp 
measurement. Thus the interval valued outputs from the sensors are 
given by 1 1 2 2[ , ],[ , ]....[ ]Mx T x T x T x T x T− + − + +

But in the case of many practical applications, the tolerance is 
not a constant value. It is characterized by probabilistic uncertainity 
and constitutes a random variable. It is reasonable to assume that 
the random tolerance value is constant on the left as well as right 
side of tolerance. Thus, the outputs of the sensors are given by 

1 1 1 1 2 2 2 2[ , ],[ , ],...[ , ]M M M Mx D x D x D x D x D x D− + − + − +

Hence, in this case, the outputs of sensors are RANDOM 
INTERVALS. It is reasonable to assume that the random variables 

1 2, ... MD D D  are independent and identically distributed.

The “length” of interval from the first sensor is 12D Thus the length 
is a random variable.

As in the case of Lebesgue’ theory of measure, the “measure” of an 
arbitrary subset of real line is characterized by a random variable. The 
author is currently developing a formal theory of random sets in which 
the “measure” of a set is a random variable. The theory could be related 
to stochastic calculus.

Theory of Graded Sets

In the theory of rough sets, a set A is specified by a tuple of sets 
( ),lower upperA A  where lowerA is a subset of upperA

Detailed theory of rough sets has been developed and applied in 
various fields of human endeavour. The author conceived the following 
generalization of a rough set called graded set.

1 2( , ,...., )LA A A A=  where the AC- sets satisfy the condition that 
they are a finite collection of nested sets i.e
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iA  is subset of 1iA + = for 1 ( 1)i L≤ ≤ −  

Such a set potentially arises in many applications. One such 
application is sensor fusion of interval valued measurements. 
Particularly we consider the “F” fusion function proposed by Schmidt 
et al. We now explain the approach to arrive at the fused interval based 
on finitely many measurement intervals.

Let 1 1 2 2[ ],[ ],...[ ]L La b a b a b  be the measurement intervals and let there 
be “f” faulty intervals (we do not know which ones are faulty). The 
fused interval estimate [ , ]c d  is obtained in the following manner:

c (i.e. left end point of fused estimate) is determined in the 
following manner. Arrange the left end points i.e. ia s′  from smallest to 
largest value. Counting down from the highest value i.e. La  consider 
the 1thf +  measurement. Consider it as ‘c’. d (i.e. right end point of 
fused estimate) is determined in the following manner. Arrange the 
right end points i.e. ib s′ from smallest to largest value. Counting up 
from the smallest value i.e. 1b consider the 1thf +  measurement.

Consider it as ‘d’.

The fused interval estimate is [c,d]. It is clear that the end points c, 
d depend on the number of faulty intervals (from say sensors). We are 
interested in understanding how graded sets naturally arise when the 
number of faulty intervals (from sensors) is varied from a smallest to 
largest value.

Specifically, let min min min maxf {f , f , 1, f 2,..., f }∈ + +  From the above 
specified method of computing the left and right end points of fused 
estimate, it is easy to see that when f is increased from min maxf to f  the 
collection of fused intervals (labeled as) Ai s′  lead to a graded set i.e.

i i 1 min maxA is a subset of A for f i f+ ≤ ≤

i.e. they are nested intervals constituting a “graded” set. Thus, in 
summary, with the number of faulty intervals/sensors as a parameter, 
the output of fused function is a graded set.

• Random graded set

Consider the case where the number of faulty sensors is a discrete 
random variable. As a consequence, the output of “F”- fusion function 
assumes various intervals with associated probabilities. Hence when 
the number of faulty sensors is varied from the lowest to the highest 
value, we arrive at what we call as a RANDOM GRADED SET.

The above concept motivates the idea where the outcomes in a 
probability space are mapped to sets (unlike the concept of a random 
variable where the outcomes are mapped to real/complex numbers) i.e. 
the domain of mapping is outcomes in a finite/countable set and the 
range is sets. We now propose another interesting model of uncertainty

Fuzzy rough set: 

A Rough set, B is specified as 

lower upper lower upperB [B B ]with B a subset of B=

Also, lower upperB B  are crisp sets. we now define a Fuzzy Rough set 
as the one where lower upperB B  are fuzzy sets with lower upperB a subset of B  

Thus, since lower upperB a subset of B  associated membership functions 
satisfy the following:

lower upperB B(x) (x) for every x Xµ ≤ µ ∈  the universe of discourse

Hence, such a “model of uncertainity” applies when the associated 
membership function of Fuzzy Rough Set, B i.e. B (.)µ  has the “lower” 

and “upper” limits.

Goal: To develop the detailed theory of FUZZY—ROUGH 
SETS: We are first interested in simple operations such as union and 
intersection: (I) Intersection of Fuzzy Rough Sets B, C: 

lower upper lower upperB [B B ],C [c c ]= =  and D B C= ∩ the operation is 
fuzzy intersection.

The membership function of Fuzzy Rough set D has lower and 
upper limits: 

lower lower upper upperD B C B C(x) [min{ (x), (x)}, min{ (x), (x)}]µ = µ µ µ µ

Union of Fuzzy Rough Sets B, C:

lower upper lower upperB [B B ],C [c c ]= =  and E B C= ∪

the operation is fuzzy union. The membership function of Fuzzy Rough 
set E has lower and upper limits:

lower lower upper upperE B C B C(x) [max{ (x), (x)}, max{ (x), (x)}]µ = µ µ µ µ

Connectionist structures: models of uncertainity 

In applied mathematics graphs are proposed as the simplest 
connection structures. They found many applications in computer 
science and other research areas. Introducing probabilistic uncertainity, 
random graphs are proposed. Such random graphs are obtained by 
starting with certain number of isolated vertices and randomly adding 
certain edges between the vertices. Detailed theory of random graphs 
with several interesting results is developed.

Generalization of random graphs

We now propose a “connectionist structure” in which there are 
certain number of isolated vertices and edges of varying “connection 
strength” (positive or negative) are randomly added between them. 
Thus in our formulation, the connection strength of an edge between 
two vertices is a discrete/continuous random variable (Note: In the 
case of random graph, the connection strength is a Bernoulli random 
variable). The connection strength could be normalized to assume 
finite/countably many values lying in [0,1]. The questions of interest 
in such connectionist structures deal with probability distributions 
on graphs of various connections strength profiles. We expect many 
applications for such a model in science and engineering.

**In the case of such non-deterministic connection structures, 
same issues questions/theorems/concepts as in the case of conventional 
random graphs are addressed and derived. For instance, one possible 
goal of such a study is to determine at what stage a particular property 
of the graph is likely to arise. We now provide some formal results

• Let their N vertices and the connection strength on the associated 
edges be represented by independent random variables i.e. N

i i 1{X } =

Definition: Let the associated connection structure (generalized 
random graph) as being “connected” if the connection strength on all 
edges is greater than or equal to a certain lower limit, say ‘k’.

Let the associated random variable Z be

1 2 NZ Min{X ,X ,...,X }=

Prob {Generalized Random Graph is connected} = Prob {Z k}≥

                                         = prob 1 1 N{X k,X k,...,X K}≥ ≥ ≥

Since the random variables N
i i 1{X } =

 are independent, we have that



Citation: Murthy GR (2014) Theory of Chances: Novel Stochastic Chains: Linear Algebraic Approach. J Appl Computat Math 3: 191. doi:10.4172/2168-
9679.1000191

Page 15 of 16

Volume 3 • Issue 7 • 1000191
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

Prob {Generalized Random Graph is connected} = N
i 1 ip{X K}=∏ ≥

Suppose the random variables N
i i 1{X } =

 are identically distributed. 
Then, we have

Prob {Generalized Random Graph is connected} = N
1(p{X k})≥

Using Chebyshev inequality, this quantity can be easily upper 
bounded. Equivalently, the cumulative distribution function (CDF) of 
the random variable Z is given by

Prob 
1

N
z X{Z k} F (k) 1 (1 F (k))≤ = = − −

If we now fix ‘k’ and let N tend to infinity (i.e. the number of vertices 
in the generalized random graph approaches infinity)

i.e. asymptotically the generalized random graph becomes
connected.

Let the random variables N
i i 1{X } =  corresponding to edge connection 

strengths be non-negative, independent and identically distributed 
with meanµDefine a new random variable Y in the following manner:

N
ii 1

1Y ( X )
N =

= ∑

It is easy to see that the expected value of random variable Y is 
given by 

E[Y] = µ
This gives the average connection strength on “N” edges of a 

generalized random graph. As in the discussion above, we would like 
to compute the probability that the “connection strength” on all “N” 
edges of a random graph is atleast Lµ  (where “L” is an integer).

Prob 1 N{X L ,X 2 L ,...,X L }≥ µ ≥ µ ≥ µ

Now, we invoke Markoff inequality for upper bounding the 
probability 

Prob i{X L }µ≥

Prob i{X L }
Lµ

µ
≥ ≤

µ
i.e. We have that prob i

1{X L }
Lµ≥ ≤

Hence, we readily have the following bound on the probability that 
the connection strength on all N edges is atleast Lµ

Prob N1{X1 L ,X 2 L ,...,XN L } ( )
L

≥ µ ≥ µ ≥ µ ≤

• Thus, we could also be interested in determining the probability
distribution on graphs/connectionist structures of certain minimum 
connection strength on all edges (For example cycles of certain 
minimum strength, open paths of certain minimum strength etc).

• We can consider such a connectionist structure (generalized
random graph) as being an “ordinary random graph if the connection 
strength on an edge exceeds a lower limit.

• Fuzzy Uncertainity based Connectionist Structures

In this model of uncertainity on a connectionist structure (such
as graph) with fixed number of vertices, the connection strength is 
associated with a Fuzzy set (of finite/countable/uncountable support). 
The membership values are naturally associated with connection 
strength of edges/links. We now introduce the following concept as a 
special case

Definition: A fuzzy graph is a connectionist structure in which the 
“connection strength” of an edge assumes only two values (“link exists” 
or “link does not exist) with associated membership values.

we are interested in issues such as the

(i) Membership value that a fuzzy graph is a tree, a spanning tree etc

(ii) Membership value that a fuzzy graph is connected

(iii) Membership value associated with closed paths (cycles), open
paths etc

7. Conclusions
In this research paper, the innovative idea of allowing “chances of

outcomes” to assume negative as well as complex (numbered) values 
is proposed. Based on such an idea, the theory of real/complex valued 

2pL chances is discussed. Also, novel class of real/complex valued 
chance based stochastic chains are discussed. The theory of 1L  chances 
is also discussed. The research area of chance number theory is briefly 
discussed. 
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