alexa Thermosonication as an Upcoming Technology in the Dairy Industry: An Overview | Open Access Journals
ISSN: 2329-888X
Advances in Dairy Research
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Thermosonication as an Upcoming Technology in the Dairy Industry: An Overview

Sunandita Ghosh*

Department of Food Science and Nutrition, University of Leeds, UK

Corresponding Author:
Sunandita Ghosh
Department of Food Science and Nutrition
University of Leeds, UK
Tel: +917319084177
E-mail: [email protected]

Received Date: September 06, 2017; Accepted Date: September 14, 2017; Published Date: September 22, 2017

Citation: Ghosh S (2017) Thermosonication as an Upcoming Technology in the Dairy Industry: An Overview. J Adv Dairy Res 5:189. doi: 10.4172/2329-888X.1000189

Copyright: © 2017 Ghosh S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Advances in Dairy Research

Abstract

Ultrasound waves are longitudinal sound waves of frequency of 20 kHz or more. As low amplitude ultrasonic waves do not significantly modify the material under examination, they can be used to analyse the material. However, high amplitude ultrasonic waves can be used to process food as they have the capacity to alter the food material by cavitation. The use of ultrasound by itself may not be effective in destroying all the microbes in food. Hence, it can be coupled with pressure or heat or both to get the desired results. Thermosonication involves the simultaneous use of low frequency ultrasound waves (20 kHz) along with heat; and the both together have some synergistic effect. When heat and ultrasound is used together, the process temperature is considerably reduced compared to the conventional heating process, making it a green and economical technology as less energy is consumed; this in turn makes it a cost-efficient process. If thermosonication is seen to bring about the desired effects in milk, then it can be used as a commercial method to treat and homogenize milk in the future.

Keywords

Ultrasound; Thermosonication; Pasteurization; Homogenization

Introduction

Commercially milk and milk products like butter, yogurt, cheese, cream etc. are treated by the conventional pasteurization method in which the milk needs to be held at high temperatures for a certain period to control the microbial growth. However, heat treatment is not effective against all microbes and also may bring about certain loss in nutrient and flavour [1]. A study by Michael P. Doyle and his team [2] has shown that Listeria monocytogenes can survive the minimum high-temperature, short-time heat treatment (71.7°C, 15 s) that is the U.S. Food and Drug Administration requirement to pasteurize milk. The high temperature also causes damage to the nutritive and organoleptic values of food. The structure and texture is deteriorated due to new compounds (toxic) formed as a result of temperature catalysed reactions or modification of the existing macro molecules [3]. The heat generated during pasteurization brings about some chemical changes like denaturation of protein, destruction of vitamin, occurrence of Maillard reaction and lysinoalanine production [4]. The proteinaceous nature of the bioactive compounds of milk may be destroyed by the heat employed during pasteurization, requiring novel technologies for treating milk [5]. Separation of fat from milk using centrifugal separators is an energy intensive process. Also, a lot of water is required to clean the centrifugators. The use of ultrasound in separating dairy fat is being studied as that require less energy and also the dependency on water to clean the equipment will be reduced [6]. Consumer demand of energy efficient, higher quality products with unaltered nutritional and sensory qualities, devoid of artificial additives has lead researchers venture out for novel processing techniques [7,8].

Hence, alternative and novel techniques are increasingly being studied to save time and processing costs, although retaining the nutritional attributes and not compromising with the product safety. Use of ultrasound can be one such non-thermal alternative of pasteurisation to treat food products. The research on ultrasound in food processing and characterizing is high in demand now because of its non-invasive, non-destructive, rapid and precise nature [9]. Ultrasound can be used in different processes like ultrafiltration, extraction, homogenization, crystallization, emulsification, drying etc. The use of ultrasound also increases the process efficiency, improves shelf life and also improves the functional properties of products [10].

Summary

Ultrasound waves are longitudinal sound waves of frequency of 20 kHz or more [11]. As low amplitude ultrasonic waves does not significantly modify the material under examination and so they can be used to analyse the material. However, high amplitude ultrasonic waves can be used to process food as they have the capacity to alter the food material by cavitation. In previous studies both low and high frequency ultrasound waves were tested to see the extent of inactivation of microbes. It was found that low frequency ultrasound waves (20-100 kHz) are more effective in bringing about the inactivation through cavitation. It has been observed that ultrasound was more effective in destroying the gram negative bacteria (Enterobacter aerogenes) than gram positive bacteria (Staphylococcus spp). The latter is not much affected due to the resistance from the capsules [12]. The use of ultrasound by itself may not be effective in destroying all the microbes in food. Hence, it can be coupled with pressure or heat or both to get the desired results [13].

Thermosonication, involves the simultaneous use of low frequency ultrasound waves (20 kHz) along with heat; and the both together have some synergistic effect. Thermosonication has been found to be more effective than thermal treatment alone in reducing Bacillus cerus spores in rice porridge and required 20-30°C lower temperature for the same spore inactivation [14]. A study revealed that at 70°C and 75.5°C, ultrasonic homogenization obtains a better particle distribution of fat globules than with no heat [15]. Thus, thermosonication can be used both for inactivation of microbes and homogenisation of milk reducing the processing costs considerably. When heat and ultrasound is used together, the process temperature is considerably reduced than the conventional heating process, making it a green and economical technology as less energy is consumed, which in turn makes it costefficient [16].

Proteases are heat stable; they just get inactivated during the heat treatment of pasteurization of milk. Hence, the shelf-life of pasteurized milk decreases as these proteases brings about gelation and bitterness in the due course of time. The effect of ultrasound combined with heat treatment is being studied to check the protease activity in processed milk; in order to increase its shelf life [17]. Yogurts made from thermosonicated milk were found to have improved consistency, texture, gel strength, viscosity and water holding capacity compared to yogurts prepared from pasteurized milk, also a drop in fermentation time of around 40% was seen [18,19]. The heat stability and gelling properties of whey proteins was improved when sonication was combined with heat treatment [20]. One of the concerns in using ultrasound in dairy is: ultrasound processing of milk may lead to the formation of volatiles due to lipid oxidation in milk. However, these volatiles can be avoided by optimising the process parameters including frequency, power levels, processing time, temperature of the milk sample, and fat content of milk [21].

Conclusion

Data on effects of ultrasound treatment on the sensory properties of milk are limited. More research is required to completely shift to ultrasonic treatment from conventional ones at the industrial level. The experimental parameters of temperature, amplitude and time should be obtained for milk and different products to get the optimal results. Thermosonication can prove to be a cost efficient technology as the process temperature is reduced due to the use of ultrasonication when compared to the conventional heating techniques. However, more pilot studies are needed to be taken up to understand the commercial feasibility of the process. If thermosonication is seen to bring about the desired effects in milk, then it can be used as a commercial method to treat and homogenize milk in the future.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 197
  • [From(publication date):
    September-2017 - Nov 22, 2017]
  • Breakdown by view type
  • HTML page views : 156
  • PDF downloads : 41
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords