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Abstract

A time transformation technique for Nambu–Poisson systems is developed, and its struc-
tural properties are examined. The approach is based on extension of the phase space P

into P̄ = P×R, where the additional variable controls the time-stretching rate. It is shown
that time transformation of a system on P can be realised as an extended system on P̄,
with an extended Nambu–Poisson structure. In addition, reversible systems are studied in
conjunction with the Nambu–Poisson structure. The application in mind is adaptive nu-
merical integration by splitting of Nambu–Poisson Hamiltonians. As an example, a novel
integration method for the rigid body problem is presented and analysed.
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1 Introduction

In 1973 Nambu [23] suggested a generalisation of Hamiltonian mechanics, taking the Liouville
condition on volume preservation in phase space as a governing principle. Nambu postulated
that the governing equations for a dynamical system on R

n should have the form

dxi

dt
=

∑

j1,...,jn−1

ǫij1...jn−1

∂H1

∂xj1

∂H2

∂xj2

. . .
∂Hn−1

∂xjn−1

(1.1)

where ǫ is the Levi–Civita tensor over n indices, and H1, . . . ,Hn−1 are smooth real valued
functions on R

n called Hamiltonian functions. Notice that the vector field in equation (1.1) is
source free (its divergence is zero), which implies that the corresponding phase flow is volume
preserving.

Later Takhtajan [27] formalised Nambu’s framework by introducing the concept of Nambu–
Poisson brackets on general phase space manifolds. Based on Takhtajan’s work the geometry of
Nambu–Poisson structures has been explored in several papers [6, 4, 5, 21, 11, 22, 28, 29].

In this paper we study time transformation of Nambu–Poisson systems. Such transformations
are important in the construction and analysis of adaptive structure preserving numerical time
stepping methods [26, 10, 3, 7, 24, 18, 2, 20, 19]. The idea is to obtain time step adaptivity
by equidistant discretisation in the transformed variable, which corresponds to non-equidistant
discretisation in the original time variable. Although numerical integration is a main motivation,
the focus in the paper is not on numerical issues, but rather on structural properties.

The current section continues with a brief review of Nambu–Poisson mechanics, and of a time
transformation method by Hairer and Söderlind [9]. The main results are in Section 2, where
time transformation for Nambu–Poisson systems is developed. In Section 3, the Nambu–Poisson
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structure is studied in conjunction with reversibility. As an application, we show in Section 4
how to construct fully explicit, adaptive numerical integration methods based on splitting of the
Nambu–Poisson Hamiltonians. In particular, a novel method for the free rigid body. Conclusions
are given in Section 5.

We adopt the following notation. P denotes a phase space manifold of dimension n, with
local coordinates x = (x1, . . . , xn). The algebra of smooth real valued functions on P is de-
noted F(P). Further, X(P) denotes the linear space of vector fields on P. The Lie derivative
along X ∈ X(P) is denoted LX . If X,Y ∈ X(P) then the commutator [X,Y ] = LXY sup-
plies X(P) with an infinite dimensional Lie algebra structure. Its corresponding Lie group is
the set Diff(P) of diffeomorphisms on P, with composition as group operation. (See McLach-
lan and Quispel [16] and Schmid [25] for issues concerning infinite dimensional Lie groups.)
If Φ ∈ Diff(P) then Φ∗ denotes the pull-back map and Φ∗ the push-forward map imposed by Φ.

1.1 Nambu–Poisson mechanics

In Hamiltonian mechanics, the phase space manifold P is equipped with a Poisson structure,
defined by a bracket operation {·1, ·2} : F(P) ×F(P) → F(P) that is skew-symmetric, fulfils
the Leibniz rule and the Jacobi identity. Nambu–Poisson mechanics is a generalisation.

Definition 1.1. A Nambu–Poisson manifold of order k consists of a smooth manifold P together
with a multilinear map

{·1, . . . , ·k} : F(P) × . . . ×F(P)
︸ ︷︷ ︸

k times

→ F(P)

that fulfils:

• total skew-symmetry

{H1, . . . ,Hk} = sgn(σ){Hσ1
, . . . ,Hσk

} (1.2a)

• Leibniz rule

{GH1, . . . ,Hk} = G{H1, . . . ,Hm} + H1{G,H2, . . . ,Hk} (1.2b)

• fundamental identity

{H1, . . . ,Hk−1, {G1, . . . , Gk}} = {{H1, . . . ,Hk−1, G1}, G2, . . . , Gk}
+ {G1, {H1, . . . ,Hk−1, G2}, G3, . . . , Gk} + . . .

+ {G1, . . . , Gk−1, {H1, . . . ,Hk−1, Gk}} (1.2c)

Remark 1.1. The case k = 2 coincides with ordinary Poisson manifolds.

The first two conditions, total skew-symmetry (1.2a) and Leibniz rule (1.2b), are straightfor-
ward: they imply that the bracket is of the form

{H1, . . . ,Hk} = η( dH1, . . . , dHk)
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for some totally skew-symmetric contravariant k–tensor η [27]. The third condition, the fun-
damental identity (1.2c), is more intricate. The range of possible Poisson–Nambu brackets is
heavily restricted by this condition [27].

A Nambu–Poisson system on a Nambu–Poisson manifold of order k is determined by k − 1
Hamiltonian function H1, . . . ,Hk−1 ∈ F(P). The governing equations are

dF

dt
= {H1, . . . ,Hk−1, F} ∀ F ∈ F(P) (1.3a)

which may also be written

dx

dt
= XH1,...,Hk−1

(x) (1.3b)

where XH1,...,Hk−1
∈ X(P) is defined by LXH1,...,Hk−1

F = {H1, . . . ,Hk−1, F}. The corresponding

flow map is denoted ϕt
H1,...,Hk−1

. Notice that due to skew symmetry of the bracket, all the

Hamiltonians H1, . . . ,Hk−1 are first integrals, which follows from equation (1.3a).
Due to the fundamental identity (1.2c), Nambu–Poisson systems fulfil certain properties

which have direct counterparts in Hamiltonian mechanics (the case k = 2).

Theorem 1.1 (Takhtajan [27]). The set of first integrals of system (1.3) is closed under the

Nambu–Poisson bracket. That is, if G1, . . . , Gk are first integrals, then {G1, . . . , Gk} is again a

first integral.

Theorem 1.2 (Takhtajan [27]). The flow of system (1.3) preserves the Nambu–Poisson struc-

ture. That is,

{G1, . . . , Gk}◦ϕt
H1,...,Hk−1

= {G1 ◦ϕt
H1,...,Hk−1

, . . . , Gn ◦ϕt
H1,...,Hk−1

} ∀ G1, . . . , Gk ∈ F(P)

or equivalently

LXH1,...,Hk−1
η = 0 (1.4)

Remark 1.2. The set of vector fields that fulfils equation (1.4) is denoted Xη(P). Clearly Xη(P)
is closed under linear combinations, so it is a sub-space of X(P). Further, since L[X,Y ]η =
LX(LY η)−LY (LXη) it is also closed under the commutator. Thus, Xη(P) is a Lie sub-algebra
of X(P). Correspondingly, Diffη(P) denotes the Lie sub-group of Diff(P) that preserves the
Nambu–Poisson structure. An element Φ ∈ Diffη(P) is called an η–map.

Remark 1.3. It is important to point out that in general not every X ∈ Xη(P) corresponds
to a Nambu–Poisson system, i.e., a system of the form of equation (1.3). The reason is that the
set of vector fields of the form of equation (1.3) is not closed under linear combinations.

There are also fundamental differences between Hamiltonian and Nambu–Poisson mechanics,
i.e., between k = 2 and k ≥ 3. In particular there is the following result, conjectured by
Chatterjee and Takhtajan [4] and later proved by several authors.

Theorem 1.3 ([6, 1, 22, 11, 13]). A totally skew-symmetric contravariant tensor of order k ≥ 3 is

a Nambu–Poisson tensor if and only if it is locally decomposable about any regular point. That is,

about any point x ∈ P such that η(x) 6= 0 there exist local coordinates (x1, . . . , xk, xk+1, . . . , xn)
such that

η =
∂

∂x1
∧ · · · ∧ ∂

∂xk

Thus, every Nambu–Poisson tensor with k ≥ 3 is in essence a determinant on a sub-manifold
of dimension k. It is not so for Poisson tensors.
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1.2 Time transformation of dynamical systems

In this section we review the time transformation technique developed in Hairer and Söderlind [9].
Consider a dynamical system

dx

dt
= X(x), X ∈ X(P) (1.5)

Its flow map is denoted ϕt
X . Introduce an extended phase space P̄ = P × R, with local

coordinates x̄ = (x, ξ). The projection P̄ ∋ x̄ 7→ x ∈ P is denoted Π, and P̄ ∋ x̄ 7→ ξ ∈ R is
denoted π. Let Q ∈ {F ∈ F(P);F > 0} and consider the extension of system (1.5) into







dx

dτ
= X(x)/ξ

dξ

dτ
= (LXQ)(x)/Q(x)

or shorter
dx̄

dτ
= X̄(x̄) (1.6)

The flows of the two systems are related by a reparametrisation t ↔ τ .

Theorem 1.4 (Hairer and Söderlind [9]). The flow of the extended system (1.6) restricted to P

is a time transformation of the flow of system (1.5). That is,

Πϕτ
X̄(x̄) = ϕ

σ(τ,x̄)
X (x), ∀ x̄ ∈ P̄ , τ ∈ R where σ(τ, x̄) ≡

∫ τ

0

ds

πϕs
X̄

(x̄)

Further, Q(x)/ξ is a first integral of system (1.6).

Proof. From equation (1.6) it follows directly that Π∗X̄ is parallel with X. Thus, Πϕτ
X̄

and
ϕt

X define the same phase diagrams. It remains to find the relation between t and τ . Since
dx/dt = (dt/dτ)( dx/dτ) it follows from equation (1.6) that dt/dτ = 1/ξ. Integration of
this relation gives σ(τ, x̄). Further, straightforward calculations and utilisation of the governing
equations (1.6) show that d(Q(x)/ξ)/dτ = 0.

Remark 1.4. It is clear that the time transformation is determined by Q. Since Q is strictly
positive, the map σ( · , x̄) : R → R is bijective, i.e., the reparametrisation t ↔ τ is bijective.

In Hairer and Söderlind [9], the motivation for the extended time transformation (1.6) is to
construct explicit adaptive numerical integrators for reversible systems. The key is that under
reversibility of Q, the extended time transformation (1.6) preserves reversibility. First, recall
the basic definitions of reversible systems.

Definition 1.2. Let R ∈ Diff(P).

• A vector field X ∈ X(P) is called reversible with respect to R if R∗ ◦ X = −X ◦ R, or
equivalently d(R(x))/dt = −(X ◦ R)(x).

• A diffeomorphism Φ ∈ Diff(P) is called reversible with respect to R if R ◦ Φ = Φ−1 ◦ R.

It is a well known result that the flow of a system is reversible if and only if its corresponding
vector field is reversible [12, 8]. Now, concerning time transformation of reversible systems, it is
straightforward to check the following result.

Theorem 1.5 (Hairer and Söderlind [9]). If X ∈ X(P) is reversible with respect to R and

Q ∈ F(P) fulfils Q = Q ◦R, then the vector field X̄ ∈ X(P̄) in equation (1.6) is reversible with

respect to R̄ : x̄ 7→ (R(x), ξ).
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2 Nambu–Poisson extensions and time transformations

In this section we develop a time transformation technique for Nambu–Poisson systems. Let P

be a Nambu–Poisson manifold of order k and η its Nambu–Poisson tensor. Consider again the
extended phase space P̄ = P × R. Our first goal is to introduce a Nambu–Poisson structure
on P̄ . The most natural extension of the Nambu–Poisson tensor η is given by

η̄ = η ∧ ∂

∂ξ
(2.1)

It is not obvious that the bracket corresponding to η̄ will fulfil the fundamental identity (1.2c).
For example, in the canonical Poisson case, i.e., k = 2, it is not so if n ≥ 3.

Lemma 2.1. If k ≥ 3 or k = n = 2, then η̄ given by equation (2.1) defines a Nambu–Poisson

structure of order k + 1 on P̄.

Proof. If k ≥ 3 then it follows from Theorem 1.3 that η is decomposable about its regular
points, and when k = n = 2 it is obviously so. Thus, η ∧ ∂

∂ξ is also decomposable about its
regular points, so the assertion follows from Theorem 1.3.

The bracket associated with η̄ is denoted {̄·, . . . , ·}̄.
Let H1, . . . ,Hk−1 ∈ F(P) be the Hamiltonians for a Nambu–Poisson system on P, i.e., of

the form of system (1.3). Further, let G ∈ F(P̄) and consider the system on P̄ given by

dF

dτ
= {̄H1, . . . ,Hk−1, G, F }̄, ∀ F ∈ F(P̄) (2.2)

Remark 2.1. A functions H ∈ F(P) is considered to belong to F(P̄) by the natural extension
x̄ 7→ H(x). Likewise, H̄ ∈ F(P̄) is considered to be a function in F(P) depending on the
parameter ξ. Thus, {̄·, . . . , ·}̄ is defined also for elements in F(P) and vice versa.

We continue with the main result in the paper. It states that time transformation of a
Nambu–Poisson system can be realised as an extended Nambu–Poisson system.

Theorem 2.1. Let G ∈ F(P̄) and assume the conditions in Lemma 2.1 are valid. Then:

1. The extended system (2.2) is a Nambu–Poisson system.

2. Its flow restricted to P is a time transformation, determined by the additional first inte-

gral G, of the flow of system (1.3). That is,

Πϕτ
H1,...,Hk−1,G(x̄) = ϕ

σ(τ,x̄)
H1,...,Hk−1

(x), ∀ x̄ ∈ P̄ , τ ∈ R

where

σ(τ, x̄) ≡
∫ τ

0

∂G

∂ξ

(
ϕs

H1,...,Hk−1,G(x̄)
)
ds

Proof. The first assertion follows directly from Lemma 2.1, since η̄ is a Nambu–Poisson tensor.
Since Hi for i = 1, . . . , k − 1 are independent of ξ, it follows from the definition (2.1) of η̄ that

{̄H1, . . . ,Hk−1, G, F }̄ =
∂G

∂ξ
{H1, . . . ,Hk−1, F} − ∂F

∂ξ
{H1, . . . ,Hk−1, G}
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Thus, for F = x1, . . . , xn, the governing equations (2.2) are parallel with those of system (1.3a),
i.e., Πϕτ

H1,...,Hk−1,G and ϕt
H1,...,Hk−1

defined the same phase diagram. The relation between τ and

t is given by dt/dτ = ∂G/∂ξ, which, after integration, gives the desired form of σ(τ, x̄).

It is straightforward to check the following corollary, which shows that the technique used by
Hairer and Söderlind [9], reviewed in Section 1.2, is a special case.

Corollary 2.1. The case G(x̄) = log(ξ/Q(x)) coincides with the transformation (1.6) applied

to system (1.3).

3 Reversible Nambu–Poisson systems

Recall that the time transformation by Hairer and Söderlind [9] is developed with reversible
systems in mind. In the previous section we developed a similar approach, but based on the
Nambu–Poisson framework. One may ask under what conditions a Nambu–Poisson system
is reversible, and in what sense the time transformation technique developed above preserves
reversibility. These questions are studied in this section.

As a first step, we have some results on necessary and sufficient conditions for a Nambu–
Poisson system to be reversible.

Proposition 3.1. Let R ∈ Diff(P). Then XH1,...,Hk−1
is reversible with respect to R if and

only if

{H1, . . . ,Hk−1, F ◦ R} = −{H1, . . . ,Hk−1, F} ◦ R, ∀ F ∈ F(P) (3.1)

Proof. Since R is a diffeomorphism it holds that F(P) ◦ R = F(P), so the governing equa-
tions (1.3a) are equivalent to

d(F ◦ R)

dt
= {H1, . . . ,Hk−1, F ◦ R}, ∀ F ∈ F(P)

This is equivalent to

d(F ◦ R)

dt
= −{H1, . . . ,Hk−1, F} ◦ R, ∀ F ∈ F(P)

if and only if condition (3.1) holds. The last set of equations is exactly the condition on
XH1,...,Hk−1

for reversibility with respect to R.

If R is a Nambu–Poisson map the assertion may be stated in the following way instead.

Corollary 3.1. Let R be a Nambu–Poisson map, i.e., R ∈ Diffη(P). Then XH1,...,Hk−1
is

reversible with respect to R if and only if

{H1, . . . ,Hk−1, F} = −{H1 ◦ R, . . . ,Hk−1 ◦ R,F}, ∀ F ∈ F(P) (3.2)

Proof. With F set to F ◦R, it is clear that the condition (3.2) is equivalent to the condition (3.1)
if R ∈ Diffη(P).

As a generalisation of Theorem 1.5, we now show in what way reversibility of a Nambu–
Poisson system is preserved by the time transformed extended system (2.2).
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Theorem 3.1. Let the system (1.3) be reversible with respect to R. Then the extended time

transformed Nambu–Poisson system (2.2) is reversible with respect to R̄ : x̄ 7→ (R(x), ξ) if

G ◦ R̄ = G.

Proof. Since ∂Hi/∂ξ = 0 we have

{̄H1, . . . ,Hk−1, G, F ◦ R̄}̄ =
∂G

∂ξ
{H1, . . . ,Hk−1, F ◦ R̄} − ∂(F ◦ R̄)

∂ξ
{H1, . . . ,Hk−1, G}

Since R̄ maps ξ to ξ it holds that ∂(F ◦ R̄)/∂ξ = ∂F/∂ξ ◦ R̄. Further, G = G ◦ R̄ yields
∂G/∂ξ = ∂G/∂ξ ◦ R̄ and

{H1, . . . ,Hk−1, G} = {H1, . . . ,Hk−1, G ◦ R̄}

Altogether we now have

{̄H1, . . . ,Hk−1, G, F ◦R̄}̄ =
∂G

∂ξ
◦R̄{H1, . . . ,Hk−1, F ◦R̄} − ∂F

∂ξ
◦R̄{H1, . . . ,Hk−1, G◦R̄}

= −∂G

∂ξ
◦R̄{H1, . . . ,Hk−1, F}◦R̄ +

∂F

∂ξ
◦R̄{H1, . . . ,Hk−1, G}◦R̄

= −{̄H1, . . . ,Hk−1, G, F }̄ ◦ R̄

where the stipulation that system (1.3) is reversible have been used in conjunction with Propo-
sition 3.1. Application of Proposition 3.1 again completes the assertion.

4 Application: numerical integration by splitting

The main motivation for extended time transformations is to construct adaptive numerical
integration algorithms. By a numerical integrator for a dynamical system X ∈ X(P), we mean
a family of near identity maps Φh ∈ Diff(P), such that Φh is an approximation of the exact
flow ϕh

X . Numerical solution “paths” are obtained by the discrete dynamical system xk+1 =
Φh(xk). The integrator Φh is consistent of order p if Φh − ϕh = O(hp), which in particular
implies Φ0 = Id. It is explicit if Φh(x) can be computed by a finite algorithm. Notice that Φh

is not a one parameter group, i.e., Φh ◦ Φs 6= Φh+s.

When constructing numerical integrators, one typically tries to preserve as much as possible
of the underlying qualitative structure of the exact flow. In our case, we like Φh to preserve the
Nambu–Poisson structure, and in presence also reversibility. In addition, time step adaptivity is
crucial in order for the integration method to be computationally efficient. Indeed, we would like
to vary the step size h during the integration process according to the present local character
of the dynamics, without destroying the structural properties of the method. The standard
approach, motivating our work, is to utilise a time transformation t ↔ τ that preserves the
structure of the original system, and then construct a τ–equidistant numerical integrator for
transformed system. An equivalent view point is to say that the time transformation should
regularise the problem, so that it becomes easier to integrate numerically.

Splitting is a compelling technique for the construction of structure preserving integrators [17].
The basic idea is as follows. Let XA(P) be a Lie sub-algebra of X(P), and let DiffA(P) be the
corresponding Lie sub-group of Diff(P). Assume that X ∈ XA(P) can be splitted into explicitly
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integrable sub-system, each of which is a system in XA(P). That is, X = X1 + . . . + Xk, where
Xi ∈ XA(P) and ϕt

Xi
(x) can be computed explicitly. A numerical integrator for X is obtained

by Φh = ϕh
X1

◦· · · ◦ϕh
Xk

. It is clear that Φh is an approximation of ϕh
X , and that Φh ∈ DiffA(P).

Further, by the Baker–Campbell–Hausdorff (BCH) formula, it follows that Φh is the exact flow of
a modified vector field X̃h ∈ XA(P), i.e., Φh = ϕh

X̃h
. This information is crucial for the analysis

of Φh. For example, if XA(P) is the Lie-algebra corresponding to a Poisson structure on P,
then Φh will exactly conserve a modified Hamiltonian, which is O(hp)–close to the Hamiltonian
for the original problem [8].

Remark 4.1. Due to convergence issues, the BCH formula needs to be truncated, which implies
that assertions on Φh, coming from X̃, are valid only for exponentially long times, i.e., up to
time scales of order O(exp(O(1/hp))). See Hairer et. al. [8] for details.

Our notion for the construction of integrators is to utilise the results in Section 2–3, and
consider splitting of the individual Nambu–Poisson Hamiltonians.

Let η be a Nambu–Poisson tensor. The set of Nambu–Poisson maps which are reversible with
respect to R is denoted Diffη,R(P). If Φ,Ψ ∈ Diffη,R(P), then in general we have

R ◦ Φ ◦ Ψ = Φ−1 ◦ R ◦ Ψ = Φ−1 ◦ Ψ−1 ◦ R 6= (Φ ◦ Ψ)−1 ◦ R

Thus, Diffη,R(P) is not closed under composition, so it is not a sub-group of Diff(P). However,
Diffη,R(P) is closed under the symmetric group operation (Φ,Ψ) 7→

√
Φ◦Ψ◦

√
Φ, which we write

as Φ⊚Ψ. Further, from the symmetric BCH formula (cf. [15]) it follows that if X,Y ∈ Xη,R(P),
then the vector field Z such that ϕt

Z = ϕt
X ⊚ ϕt

Y belongs to Xη,R(P).

Remark 4.2. For near identity maps,
√

Φ is defined by taking its representation Φ = exp(X)
and then setting

√
Φ = exp(X/2). In our case, Φ will always be an exact flow ϕt

X , in which case
√

ϕt
X = ϕ

t/2
X .

We now give a result concerning reversible systems, which is of use for the analysis of periodic
numerical paths of reversible splitting methods.

Lemma 4.1. Let X ∈ X(P) be reversible with respect to R ∈ Diff(P). Assume that the set

U = {x ∈ P;R(x) = x} of fix-points of R is non-empty and that γ : R → P is a solution curve

of X for which there exists t1, t2 ∈ R with t1 < t2 such that γ(t1), γ(t2) ∈ U. Then γ is periodic.

γ2 γ

U

Proof. For simplicity assume that t1 = 0 and t2 > 0, which is not a
restriction. The curve γ2(t) = (R ◦ γ)(−t) is also a solution curve due to
reversibility. Further, since R restricted to U is the identity map we have
the equalities γ(t1) = γ2(t1) and γ(−t2) = γ2(t2). Due to uniqueness of
solutions the first equality implies γ2 = γ, which in conjunction with the
second equality implies that γ(−t2) = γ(t2). Thus γ returns to the same
point twice, so it is periodic.

4.1 Rigid body problem

The Euler equations for the free rigid body is a Nambu–Poisson system on the phase space R
3,

equipped with the canonical Nambu–Poisson structure η = ∂/∂x1 ∧ ∂/∂x2 ∧ ∂/∂x3. Its two
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Hamiltonians are total angular momentum M(x) =
∑

x2
i /2 and kinetic energy T (x) =

∑
x2

i /(2Ii),
where Ii > 0 are the principal moments of inertia. Thus, the governing equations are

dF

dt
= {M,T,F}, ∀ F ∈ F(R3) (4.1a)

which explicitly reads

ẋ1 = a1x2x3, a1 = (I2 − I3)/(I2I3)

ẋ2 = a2x3x1, a2 = (I3 − I1)/(I3I1)

ẋ3 = a3x1x2, a3 = (I1 − I2)/(I1I2)

(4.1b)

It is straightforward to check that the system is reversible with respect to the linear diffeomor-
phism R1 : x 7→ (−x1, x2, x3), and in symmetry, also with respect to R2, R3 defined analogously.
Thus, due to Lemma 4.1, we have the following KAM–like result for the free rigid body.

Theorem 4.1. Let X̃h ∈ X(R3) depend smoothly on h such that X̃0 = XM,T 6= 0. Assume

that X̃h, for each h, is reversible with respect to R1, R2 and R3. Then, for small enough h, the

solution paths of X̃h are periodic.

Proof. It is known that if γ is a solution curve of the Euler equations, then it is either an
equilibrium, or it is periodic with finite period te > 0, in which case it crosses either of the planes
Ui = {x ∈ R

3;Ri(x) = x} every half period [14]. That is, it holds that γ(t1), γ(t1 + te/2) ∈ Uk

for some k ∈ {1, 2, 3} and t1 ∈ [0, te/2). Further, since XM,T ≡ 0 is not allowed, it is known that
if γ is an equilibrium, then γ(t) ∈ Uk. Let γ̃h be a solution curve of X̃h and let γ be the solution
curve of XM,T such that γ(0) = γ̃h(0). Assume first that γ is not an equilibrium. Then, for
any δ ∈ (0, te/2) it holds that a continuous path between γ(t1 − δ) and γ(t1 + δ) must cross the
plane Uk. For small enough h it holds that γ̃h(t1 − δ) and γ̃h(t1 + δ) approximates γ(t1 − δ) and
γ(t1 + δ) well enough to also be separated by Uk. Thus, γ̃h(t̃1) ∈ U1 for some t̃1 ∈ (t1− δ, t1 + δ).
Likewise, γ̃h(t̃2) ∈ U1 for some t̃2 ∈ (t1 + te/2 − δ, t1 + te/2 + δ). Since X̃h is reversible with
respect to R1 it follows from Lemma 4.1 that γ̃h is periodic. If γ is an equilibrium and γ̃h is not,
then either there exists s > 0 such that γ̃h(s) /∈ Uk, in which case the solution curve of XM,T

such that γ(s) = γ̃h(s) is periodic, so we are back to the first case, or γ̃h(0), γ̃h(s) ∈ Uk, in which
case the assertion follows directly from Lemma 4.1.

The traditional perception in the literature is to view the rigid body equations (4.1) as
a Poisson system, with the non-canonical Poisson tensor ηM = η( dM, ·1, ·2), induced by the
total angular momentum (M is a Casimir, cf. [14], for this Poisson structure). We denote the
corresponding bracket by {·1, ·2}M . It is clear that DiffηM

is a sub-group of Diffη. Consider the
Hamiltonian splitting T =

∑
Ti, where Ti(x) = x2

i /(2Ii). The sub-system Ḟ = {Ti, F}M does
not affect xi, i.e., ẋi = 0, and all the quadratic terms contain xi. Hence, it is in essence a linear
system on R

2, and therefore explicitly integrable (since the exponential map is computable
for any 2 × 2–matrix). A well known second order integrator is obtained by the symmetric
composition

Φ
gT
h = ϕh

M,T1
⊚ ϕh

M,T2
⊚ ϕh

M,T3

This integrator has the following properties:
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1. It is reversible with respect to R1, R2 and R3. Thus, its modified vector field X̃h is a
R1, R2, R3–reversible perturbation of X, so Theorem 4.1 may be used to deduce periodic
orbits of the numerical solution.

2. It is a Poisson map, i.e., Φ
gT
h ∈ DiffηM

(P). This implies that its modified vector field X̃h

is the Hamiltonian vector field of a modified Hamiltonian T̃h = T + O(h2), so T is nearly
conserved. Further, since M is a Casimir of the Poisson structure it is exactly conserved.

Remark 4.3. One may also view the rigid body equations (4.1) as a Poisson system with the
Poisson tensor ηT = η(·1, dT, ·2), and then construct an integrator Φ

gM
h by splitting of M . This

integrator will exactly conserve T , and nearly conserve M .

Following our notion, we now consider Hamiltonian splitting of both M and T . To this end,
let Mi(x) = x2

i /2. Since XMi,Ti
= 0 it follows that

XM,T = XM1+M2,T1+T2
+ XM2+M3,T2+T3

+ XM3+M1,T3+T1

Each such vector field is integrable by linear extrapolation, for example,

ϕt
M1+M2,T1+T2

(x) = x + tXM1+M2,T1+T2
(x)

Thus, a second order integrator is obtained by

Φ
gMgT
h = ϕh

M1+M2,T1+T2
⊚ ϕh

M2+M3,T2+T3
⊚ ϕh

M3+M1,T3+T1

This integrator is computationally cheaper than Φ
gT
h , since computation of the exponential map,

which involves evaluation of sin and cos, is not necessary. Further, it has the following properties:

1. It is reversible with respect to R1, R2 and R3. Thus, its modified vector field X̃h is
a R1, R2, R3–reversible perturbation of XM,T , so Theorem 4.1 may be used to deduce
periodic orbits of the numerical solution.

2. It is an η–map, i.e., Φ
gMgT
h ∈ Diffη, which implies X̃ ∈ Xη(P). However, Φ

gMgT
h does

not correspond to a modified Nambu–Poisson system (see Remark 1.3), so there are no
exactly conserved modified Hamiltonians M̃ and T̃ . Nevertheless, M and T are still nearly
conserved due to the periodicity of the numerical solution.

Consider now time transformation of system (4.1) into an extended Nambu–Poisson system

dF

dτ
= {̄M,T,G,F }̄, ∀F ∈ F(R4) (4.2)

We have the following generalisation of Theorem 4.1.

Theorem 4.2. Let X̃ǫ ∈ X(R4) depend smoothly on ǫ such that X̃0 = XM,T,G 6= 0. Assume that

X̃ǫ, for each ǫ, is reversible with respect to R̄1, R̄2 and R̄3, and that there exists δ > 0 such that

∂G/∂ξ > δ. Then, for small enough ǫ, the solution paths of X̃ǫ are periodic.

Proof. From the definition of R̄i it follows that Ūi = {x̄ ∈ R
4; R̄i(x̄) = x̄} is a hyper-plane,

and that R
3 ∋ x ∈ Ui implies (x, ξ) ∈ Ūi for all ξ ∈ R. Let γ be a solution curve of XM,T,G.

Since it is a time transformation of a solution curve of XM,T and since ∂G/∂ξ > δ it follows
that there exists t1 < t2 and k ∈ {1, 2, 3} such that γ(t1), γ(t2) ∈ Ūk. Thus, γ is periodic due to
Lemma 4.1. The proof now proceeds exactly as the proof of Theorem 4.1.
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Assume G takes the splitted form G(x̄) = G1(x)+G2(ξ). We propose the following adaptive
versions of Φ

gT
h and Φ

gMgT
h .

Φ
gT gG
ǫ = ϕǫ

M,T,G1
⊚ ϕǫ

M,T1,G2
⊚ ϕǫ

M,T2,G2
⊚ ϕǫ

M,T3,G2

Φ
gMgT gG
ǫ = ϕǫ

M,T,G1
⊚ ϕǫ

M1+M2,T1+T2,G2
⊚ ϕǫ

M2+M3,T2+T3,G2
⊚ ϕǫ

M3+M1,T3+T1,G2

Notice that all of the partial flows are explicitly integrable. In particular, ϕǫ
M,T,G1

(x̄) = x̄ +
ǫXM,T,G1

(x̄). Further, it holds that

ϕǫ
M,Ti,G2

(x̄) = (ϕ
ǫ

∂G2

∂ξ
(ξ)

M,Ti
(x), 0), i = 1, 2, 3

and correspondingly for ϕǫ
Mi,Ti,G2

. These integrators have the following properties:

1. They are reversible with respect to R̄1, R̄2 and R̄3. Thus, their modified vector fields
are R̄1, R̄2, R̄3–reversible perturbation of XM,T,G, so Theorem 4.2 may be used to deduce
periodic orbits of the numerical solution. (Assuming ∃ε > 0 such that ∂G2/∂ξ > ε.)

2. They are η̄–maps. However, they do not correspond to a modified Nambu–Poisson system
(see Remark 1.3). Nevertheless, M , T and G are still nearly conserved due to the period-
icity of the numerical solution. In fact, M is exactly conserved by Φ

gT gG, since each partial
flow is an ηM–map.

As an illustration, numerical simulations with Φ
gMgT , Φ

gT , Φ
gMgT gG, and Φ

gT gG are given. The
moments of inertia are I1 = 1/2, I2 = 1, I3 = 2, and initial data are x0 = (0, cos(θ), sin(θ)),
with θ = 0.2, which correspond to rotation “nearly” about the unstable principle axis. For the
adaptive integrators the additional Hamiltonian is G = G1+G2 = − log(‖XM,T ‖+0.01)+log(ξ),
so the steps become smaller as the magnitude of the vector field XM,T increases. The step size
h = 0.15 is used for the non-adaptive integrators, and for the adaptive integrators ǫ is chosen to
yield the same mean time step (i.e. so that the mean of ǫ∂G/∂ξ is h).

A comparison of solutions in the t (non-adaptive) and in the τ (adaptive) variables are
given in Figure 1. Notice that the time-stretching makes the solution “smoother”. Further,
the numerical errors in the Hamiltonians are plotted in Figure 2. Notice that the errors are
significantly smaller for the adaptive integrators.

5 Conclusions

A time transformation technique for Nambu–Poisson systems, based on extending the phase
space, have been developed (Theorem 2.1). The technique is shown to preserve reversibility un-
der mild conditions on the additional Hamiltonian function (Theorem 3.1). A family of numerical
integrators based on splitting of the Nambu–Poisson Hamiltonians is suggested. In particular,
a novel approach for numerical integration of the Euler equations for the free rigid body is pre-
sented. By backward error analysis, it is shown that periodicity is preserved (Theorem 4.1 and
Theorem 4.2).
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Figure 1. Solution curves for the non-adaptive integrator Φ
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T , and for the adaptive integrator Φ
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G.

Notice that the curves in the lower graph, corresponding to Φ
g
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G, are “smoother”. This is due to the
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Figure 2. Absolute errors in the Hamiltonians. Notice that the errors in T (and M) are significantly

smaller for the adaptive integrators. Thus, increased efficiency due to adaptivity is obtained. (Recall

that Φ
g
T and Φ

g
T

g
G conserve M up to rounding errors, whence M is not plotted for these.)
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