alexa Tissue Performance Characteristics: Closing the Fidelity Gap in Medical Simulations | OMICS International
ISSN: 2167-1222
Journal of Trauma & Treatment
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Tissue Performance Characteristics: Closing the Fidelity Gap in Medical Simulations

Jack E Norfleet1*, Emily Stern2 and Yuanli Bai3

1Army Research Laboratory, University of Minnesota, Orlando, FL, Minneapolis, USA

2Florida State University, Orlando, FL, Minneapolis, USA

3University of Central Florida, USA

*Corresponding Author:

Jack E. Norfleet
Army Research Laboratory
University of Minnesota, Orlando
FL, Minneapolis, USA
Tel: 407-384-3897
E-mail: [email protected]

Received date: June 20, 2017; Accepted date: July 27, 2017; Published date: July 29, 2017

Citation: Norfleet JE, Stern E, Bai Y (2017) Tissue Performance Characteristics: Closing the Fidelity Gap in Medical Simulations. J Trauma Treat 6:386. doi:10.4172/2167-1222.1000386

Copyright: © 2017 Norfleet JE, et al. This is an open-access article distributed under the terms of the creative commons attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Trauma & Treatment

Abstract

Medical simulations often lack the fidelity necessary to train higher-level procedures such as surgery. To work around these gaps, organizations with a training mission like the Department of Defense (DoD) often resort to biologic tissues from cadavers and animals.

Keywords

Simulation; Training; Education; Pleura; Chest tube; Military; Tension pneumothorax

Introduction

Medical simulations often lack the fidelity necessary to train higherlevel procedures such as surgery. To work around these gaps, organizations with a training mission like the Department of Defense (DoD) often resort to biologic tissues from cadavers and animals [1]. However, employing biologic tissues introduces significant costs, social issues, and logistical complexity to the training mission. To close this training capability gap, the DoD is leading a multi-institutional effort to improve the fidelity of synthetic and virtual tissues by implementing measured human tissue properties into training simulations.

Problem

Defining “more realistic” has been a problem plaguing medical simulation for decades. Most synthetic medical simulators use plastics and other polymers that meet availability and price at the cost of fidelity. The fidelity of these materials is validated by the subjective opinions of ‘experts’. While acceptable for basic procedural training, the continued use of biological replacements at higher educational levels suggests a fidelity gap.

Research

To quantify fidelity gaps, the DoD and academia are objectively measuring and describing tissue characteristics and behaviors. The hypothesis they follow is: “simulated tissues based on constitutive models formulated from measured biologic tissue characteristics will behave similar to biologic tissues when subjected to medical interventions.” These early studies involve soft tissue mechanics and fracture mechanics.

Large data collections are ongoing at the Universities of Washington and Minnesota where human tissues are tested within 96 hours post mortem, from fresh cadavers younger than 50 years old at the time of death. The age limit is imposed to better understand the tissue properties of the military-aged population. The tissues of interest are identified through detailed cognitive task analyses of the medical procedures taught using simulated and biologic tissues. Concurrently, the Army Research Laboratory and the University of Central Florida are testing simulated tissues from commercial medical training devices.

Donations and synthetics are separated and then cut into dog bone samples in various orientations to detect anisotropy. After preconditioning to reduce viscoelastic effects each sample is subjected to uniaxial tension until fracture. A constitutive stress/stretch curve is plotted and the Ultimate Tensile Strength (UTS) and stretch ratio at fracture (λf) are recorded.

Parietal Pleura: A Case Study

Parietal pleura is the tough, thin membrane that covers the interior of the chest wall. It is critical for training because needle thoracostomy and chest tube placement rely on haptic cues to indicate that the correct space in the body has been accessed [2]. Simulators use various polymer materials to provide this haptic “pop” [3].

In previous work, pleura data from all age groups was compared to synthetics [3]. These data have since been narrowed to a population of 50 years old or younger (n=48) focusing on UTS and λf. Significant anisotropy was not detected. One standard deviation above and below the mean (x̅ ± σ) was selected for a 70% solution. Large σ compared to x̅ were experienced due to the natural variance in biologic tissue and the small sample size. The final performance envelopes are UTS=1.14 ± 0.88 MPa and λf =1.76 ± 0.58. Representative models were compared.

Results and Discussion

In Figure 1, a plot of measured human pleura is overlaid on a constitutive model of simulated pleura from a popular medical simulator. It is evident that the performance difference is significant. Hundreds of thousands of soldiers have trained on this simulator model that requires 12 times the force to puncture a pleura that stretches 1.74 times as far as human tissue.

trauma-treatment-human-pleura-synthetic-pleura

Figure 1: A comparison of constitutive behaviors between human pleura and synthetic pleura.

Conclusion

Puncturing a tough membrane to blindly enter a small space within the body is a delicate yet violent procedure and the opportunity to introduce negative training effects is great. Prototype pleura are being formulated to meet the measured requirements and further studies will be conducted to assess their effects on learning.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 222
  • [From(publication date):
    August-2017 - May 26, 2018]
  • Breakdown by view type
  • HTML page views : 200
  • PDF downloads : 22
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7