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Tumor necrosis factor-α (TNF), a double-edged sword with both 
pro-inflammatory and anti-inflammatory properties, is one of the most 
widespread clinically targeted cytokines [1-4]. Anti-TNF therapies, such 
as infliximab, adalimumab, golimumab, and certolizumab, are central 
to the treatment of several autoimmune diseases, including rheumatoid 
arthritis (RA), inflammatory bowel disease (IBD), ankylosing 
spondylitis (SpA), and psoriasis. TNF blockade may also offer a 
potential avenue for the treatment of acute neuromyelitis optica (NMO) 
and/or NMO spectrum disorders (NMOSD) [5]. However, the use of 
currently available anti-TNF therapeutics is limited by their association 
with new onset or exacerbation of neuroinflammatory demyelinating 
disorders, including multiple sclerosis (MS), optic neuritis (ON), and 
acute transverse myelitis [2]. The precise mechanisms that predispose 
patients who receive anti-TNF treatment to benefit or increase risk of 
central nervous system (CNS) demyelination are not well-understood, 
but several theories have been proposed. First, TNF blocking agents 
may not penetrate the endothelial blood brain barrier (BBB), but rather 
precipitate disease by augmenting peripheral T cell auto-reactivity [6,7]. 
Second, TNF blockade may skew cytokine production, i.e., decrease 
IL-10 and increase IL-12 production, to facilitate demyelination [8]. 
Third, TNF blockers may “sponge” and thus lower the level of TNF in 
the periphery, thereby restricting disease alleviation to organs outside 
of the CNS. And fourth, reduced peripheral TNF levels may unmask a 
latent infection to propagate an autoimmune process [9]. The objective 
of this commentary is to bring to the forefront an alternative theory that 
highlights the influence of the gut microbiome on not only development 
but also treatment of autoimmune diseases [10].

The multiplicity of effects that TNF imparts on immunological 
responses, such as host defense, inflammation, cell death, and tissue 
repair, emanate from a two-ligand, two-receptor signaling system 
as well as differential expression of both ligands and their receptors. 
This pleotropic cytokine is produced mostly by monocytes and 
macrophages, but also lymphoid cells, microglia, astrocytes, dendritic 
cells, natural killer cells, and others. TNF is synthesized as a monomeric 
transmembrane molecule (tmTNF) and is cleaved from the cell surface 
by TNF converting enzyme (TACE) to release a soluble form of TNF 
(sTNF). Homotrimeric TNF (tmTNF and sTNF) binds to one of two 
distinct receptors, type 1 TNF receptor (TNFR1) or type 2 TNF receptor 
(TNFR2). TNFR1 is ubiquitously expressed and is activated in response 
to sTNF to promote inflammation, apoptosis, and demyelination. 
In contrast, TNFR2 expression is largely restricted to endothelial, 
hematopoietic, microglial, and some neuronal cells; has a higher 
affinity for tmTNF than sTNF; promotes cell survival; CD4+ Foxp3+ T 
regulatory (Treg) cell expansion; oligodendrocyte regeneration; and 
nerve remyelination [4,11-13]. Additionally, the gene for TNF is linked 
to the human major histocompatibility complex (MHC) located on 
chromosome 6 and TNFRSF1A, encoding TNFR1, is recognized as a 
risk allele for MS [14,15]. Animal models of experimental autoimmune 
encephalomyelitis (EAE) have associated TNFR1 and TNFR2 deficiency 
with decreased and increased disease severity, respectively, to suggest 
a selective role for TNFR1 in CNS demyelination. Thus, selective 
inhibition of sTNF/TNFR1 signaling, leaving beneficial tmTNF/
TNFR2 signaling intact may open new opportunities for TNF-selective 

next-generation therapeutics for the prevention and/or treatment of 
CNS autoimmune disorders (Figure 1).

Previous studies in mice have revealed that CD4+ T cell–intrinsic 
TNFR2 promotes Il2  expression [16]. Given that IL-2 is required for 
the expansion and function of CD4+ FoxP3+ T cells (Tregs), Miller et al., 
used a genetic loss-of-function approach to determine whether selective 
ablation of TNFR2 is sufficient to augment MOG35–55-specific CD4+ T 
cell auto-reactivity [10]. Surprisingly, 59 of 64 (92%) of female, but 
only 5 of 60 (8%) of male, C57BL/6J TNFR2−/− 2D2 Foxp3gfp reporter 
mice developed fulminant spontaneous autoimmune disease. A similar 
increase in spontaneous disease incidence was not observed in female 
TNFR2-/- that did not carry the 2D2 T cell receptor transgene. While 
a clear understanding of the underlying mechanisms remain elusive, 
these results are consistent with the view that anti-TNF therapy 
exacerbates risk in those patients who are already at risk (due to a genetic 
predisposition) for developing immune-mediated demyelination [17]. 
Augmented disease was also absent in TNF-/- 2D2 mice to implicate 
distinct roles for TNFR1 and TNFR2. Histologically, lesions were absent 
from the brain, but the optic nerves and spinal cord exhibited extensive 
inflammation, demyelination, and axonal loss, with infiltration of 
predominantly B cells and T cells. With the noted exception of high-
titer of MOG antibodies, the disease is highly reminiscent of NMO-
like pathology. Importantly, it has yet to be determined whether 
the presence of MOG antibodies in TNFR2−/−  2D2  mice reflect an 
underlying pathogenic mechanism, a secondary immune response, a 
simple bystander phenomenon, or even a beneficial effect. 

Strikingly, maternal antibiotic treatment protected TNFR2−/− 2D2 
offspring from developing spontaneous disease. The microbiome, 
consisting of the trillions of microorganisms (bacteria, viruses, and 
fungi) residing in our bodies, is a rapidly emerging area of interest 
in the medical community. While most microorganisms in our 
microbiome are beneficial or harmless, changes in the microbiome 
(dysbiosis) have been linked to diseases, including type 1 diabetes 
(T1D) and IBD [18,19]. To explore the possible connection between 
changes in the microbiome and female-biased spontaneous disease 
development in TNFR2−/− 2D2 mice, the Miller et al., first demonstrated 
that cross-fostering of TNFR2−/− 2D2 pups from the birth (donor) to 
recipient wild-type mothers, completely devoid of antibiotic treatment, 
restored disease susceptibility in female TNFR2−/− 2D2 mice. Data was 
then collected on the composition of gut microbiome in male and 
female TNFR2−/− 2D2 and TNFR2−/− mice. 16S rRNA gene amplicon 
sequencing of fecal samples identified a distinct gut microbiota profile, 
including a higher abundance of Akkermansia muciniphila, Sutterella 
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sp., Oscillospira sp., Bacteroides acidifaciens, and Anaeroplasma sp. in 
male TNFR2-/- 2D2 mice that associated with disease protection. These 
results strongly implicate that interactions between environmental (e.g., 
TNFR2 signaling blockade and sex hormones) and genetic factors (e.g., 
2D2 auto-reactivity) with gut microbiota contribute to the development 
of spontaneous disease in female TNFR2−/−  2D2 mice. Importantly, 
these observations highlight the importance of the microbiome on not 
only development but also treatment of autoimmune disease. Male-
biased microbiome-mediated protection has also been implicated in 
disease progression in the NOD T1D mouse model [20]. Collectively, 
the TNFR2-/- 2D2 model raises an interesting question of whether anti-
TNF treatment may be linked to myelin-specific or cross-reactivity 
to environmental myelin-similar peptides (commensal bacteria), in 
AQP4-IgG seronegative, MOG-IgG seropositive NMO and/or NMO 
spectrum disorder patients [21-23].

In conclusion, experimental models and clinical trials suggest a role 
for TNF blockade in CNS demyelination. The potential for sTNF and 
tmTNF to exert different functions in different cells under normal and 
pathological conditions within the CNS has warranted investigations 
to delineate the distinct functions of these two ligands. The report by 
Miller et al., identifying gut microbiota as a putative TNFR2-selective 
factor that affects autoimmune disease development in genetically 
susceptible animals, is consistent with the idea that selective targeting 
of TNFR1-mediated signaling, while sparing TNFR2 activation, may 
lessen adverse effects of anti-TNF therapies in the CNS. The findings 
in this report further suggest that investigations aimed to better 
understand distinct sTNF and tmTNF functions should be extended to 
include the intestines and the composition of commensal microbiota. 
Lastly, this report highlights that individuals may respond differently 
to anti-TNF therapy, in part, because of the commensal microbes that 
they carry, and further emphasizes the importance of sex and gender 
when studying mechanisms by which TNF blockade may affect health 
and disease processes.

(Figure 1). Shedding is an important for the control of TNFR1 and 
TNFR2 activity. There are two forms of tumor necrosis factor-α (TNF), 
a membrane-bound protein (tmTNF) and a soluble form (sTNF). 

sTNF is generated by cleavage of tmTNF by the metalloproteinase, 
TACE (TNF converting enzyme), alternatively called ADAM 17 
(adisintegrin  andmetalloproteinase), from the cell membrane. TNF 
mediates its pleoptropic functions through two distinct receptors. Type 1 
TNF receptor (TNFR1) expression is ubiquitous and largely constitutive. 
In contrast, type 2 TNF receptor (TNFR2) expression is more restricted 
to cells of the immune system, such as B and T lymphocytes (especially 
CD4+ FoxP3+ T regulatory cells) , macrophages, but also epithelial cells 
of the gut, microglia, and neurons. Like tmTNF, TNFR1 and TNFR2 
are shed from the cell surface by TACE/ADAM17 and released into the 
extracellular compartment. tmTNF bind and signals through TNFR2 
with higher affinity than TNFR1; whereas, sTNF has a higher affinity 
for TNFR1 than TNFR2. Soluble Lymphotoxin-a (LT-α), also called 
TNF-β, binds TNFR1 and TNFR2 with comparable affinity.
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