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Introduction
This presentation aims at the analysis of computational potential 

of a modification of a well-known numerical approach to partial 
differential equations. The approach is based on the classical boundary 
integral equations method [1]. But prior to the analysis, we will attempt 
to restore a historical justice as to the title of that approach. Our view-
point is presented on how the computational community had, with 
no reason, departed in 1985 from the original name of the method 
of functional equations proposed in [2] in 1964, and started calling 
it the fundamental solutions method. This created a confusing and 
distractive situation where two distinct names are linked to a single 
method. The departure from the original name had been undertaken 
in [3]. And what strikes the most is that the newly introduced name is 
irrelevant to the nature of the method. Yes, the fundamental solution 
concept is important for the method, but it is also vital for every of a 
wide spectrum of the numerical approaches developed in the boundary 
integral equations method. Hence, the term fundamental solution does 
not make the newly introduced name either clearly informative or 
uniquely distinguishable. A different feature makes in fact this method 
uniquely recognizable. Namely, this and only this method reduce a 
problem under consideration to functional equations. Just this very 
feature had motivated the method's creators Kupradze and Aleksidze 
when they came up in [2] with the original well-balanced name the 
method of functional equations. The name-flip in [3] was made 
quietly, without discussion. To trace out how that happened, recall the 
title of [2] “The method of functional equations for the approximate 
solution of certain boundary-value problems” and then read how the 
author of [3] cites that paper: “Usually related to the boundary integral 
equations method is the fundamental solutions method.” Following 
[3], a misled part of the computational community had begun to refer 
to the method with the newly introduced name. So, the damage to 
justice was made. The name- flip generated an ill-posed opinion that 
the last publication on the method of functional equations is dated 
nearly fifty years ago, whereas the fundamental solutions method has 
been widely used through all these years. The opinion is senseless, but 
its very existence is hard unfortunately to ignore. Our long time [4,5-
8] involvement with the boundary integral equation method reveals
high computational potential of a specific modification of the method

of functional equations, which we originally proposed in [4]. The 
modification utilizes some Green's functions relevant to the considered 
problem, and will be called herein the Green's function modification 
of the method of functional equations (abbreviated as GF-MFE). The 
GF-MFE represents a semi-analytical technique. At its analytical stage, 
a special integral representation is constructed for the solution of the 
considered boundary-value problem, with an appropriate Green's 
function (being referred to, in this study, as the resolving Green's 
function) used for the kernel of that integral representation. Note 
that it is absolutely critical to possess a computer- friendly resolving 
Green's function. The numerical stage of the GF-MFE is, in turn, based 
on a more or less traditional meshless numerical scheme. An important 
feature of the GF-MFE predetermines its computational effectiveness, 
making it especially attractive for users. Due to properties of resolving 
Green's functions, some of the boundary conditions in the considered 
problem are satisfied prior to a numerical work. This implies that the 
resultant functional equations do not require a numerical solution over 
the entire boundary of the region, notably enhancing the practicality 
of the GF-MFE. The computational potential of the GF-MFE is 
targeted in this study. The method will be applied to boundary-value 
problems stated on regions of irregular configuration for equations 
whose coefficients are not necessarily continuous functions. We focus 
on the construction of computer-friendly representations of Green's 
functions for such problems.

Description of the GF-MFE procedure
Let a two-dimensional multiply-connected region Ω0 be bounded 

with a piecewise smooth contour 0τ τ== m
j jU , where the exterior 

contour 0Γ  is either closed or semi-closed, whilst , (j 1,m)τ =j  represent 
closed interior contours that do not overlap with each other. Ω0 could 
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also be interpreted as the simply-connected region  0Ω  bounded with   
0Γ  and weakened with m apertures whose contours are Γ j . In Ω0, we 

consider a well-posed linear homogeneous boundary-value problem 

0 0 0[w (P)] 0, P= ∈ΩL   				                    (1)

0 0 0[w (P)] 0,P= ∈ΓB 			                 (2)

[w (P)] 0, P , 1,= ∈Γ =j j jB j m 			                (3)

allowing only the trivial solution w (P)≡0. Here L represents a 
second order linear differential operator with possibly piecewise 
constant coefficients, whilst B0 and Bj are linear first order operators 
imposing one of the three standard types of boundary conditions 
of either Dirichlet, or Neumann, or Robin type, with a single one of 
these conditions being imposed on each of the interior contours. As 
to a physical process or phenomenon that could be simulated with 
the above problem statement, one might recall, for example, a two-
dimensional steady-state diffusion type process in a thin plate made 
of a piecewise homogeneous conductive material, with the plate's 
middle plane occupying the region 0 . The focus in this study is, in 
part, on the analysis of the computational potential of a semi-analytical 
approach implemented to the construction of the Green's function 
G (P,Q) to the boundary-value problem in (1)-(3). To describe the 
approach in necessary detail, let  ( ),G P Q  represent the Green's function 
of the boundary-value problem stated in (1) and (2) on the simply 
connected region  0Ω . To avoid a confusion of dealing with the two 
Green's functions,  ( ),G P Q  will be referred to, in what follows, as the 
resolving Green's function. The latter is supposed to be available prior 
to a numerical treatment of the problem in (1)-(3). Proceeding with the 
approach, originally proposed in [4], we express the Green's function 
G (P,Q) of the boundary-value problem of (1)-(3) in terms of the 
resolving function  ( ),G P Q  as



Q(P,Q) G(P,Q) U (P),= +G 			                 (4)

where the second term represents an additive component to the regular 
term of the Green's function G(P,Q) that we are looking for. Evidently, 
for the source point Q* arbitrarily fixed in Ω0, the component UQ* (P) 
must represent the solution to the boundary-value problem

Q* 0[U (P)] 0,P= ∈ΩL 				                   (5)

0 Q* 0B [U (P)] 0, P τ= ∈ 				                    (6)

Q*B [U (P)] (P),P , 1,mϕ τ= ∈ =j j j j 			                  (7)

with φj (P) being the traces that the operators Bj, acting on   ( )*,G P Q , 
leave on Γ j . That is, 

*(P) [G(P,Q )],P ,1,mϕ τ= ∈j j jB

From the representation in (4), it follows that, since the function 
UQ* (P) is assumed to be regular everywhere in Ω0 (at P=Q*, in 
particular), the Green's function G (P,Q) possesses the same type of 
principal singularity as  ( ),G P Q .

Taking advantage of the defining properties of  ( ),G P Q , it sounds 
reasonable to express the solution UQ (P) to the problem in (5) - (7) in 
the integral form



'

'
* 0

1
( ) ( ,S) ( )d ( ),µ

Γ
=

= Γ ∈Ω∑ ∫
j

m

Q j j
j

U P G P S S P 	                 (8)

where ' , (j 1,m)Γ =j
 represent some closed piecewise-smooth lines 

(which will be referred to, in this presentation, as the fictitious contours), 

each of which is located: (i) entirely inside of the corresponding 
aperture contour Γ j  and (ii) reasonably close to the latter. The density 
functions uj (Q) in (8) are assumed integrable on 'Γ j . It is evident that, 
due to the defining properties of the resolving Green's function , on one 
hand, and to the fact that the fictitious contours   are located outside of 
Ω0 , on the other hand, the representation in (8) satisfies the governing 
differential equation in (5) everywhere in Ω0. Moreover, the boundary 
condition in (6) is also satisfied, regardless of the density functions 
μj(Q). Thus, the presence of the latter provides the representation in (8) 
with some degree of freedom, which can be used to satisfy the boundary 
conditions in (7). Taking the field point P in (8) to the factual aperture 
contours Γ j ; (j=1; m), we obtain an m×m system of regular functional 
equations in the density functions μj(S). The system appears in form



'

'

1
( ) ( , ) ( ) ( ), , 1,

τ
ϕ µ

=

− = ∈ =∑∫
j

m

i j
j

P G P S j S dT S P Ti i m                          (9)

Two comments are offered as to the classification of the above 
system. First, its regularity is supported by the fact that each 'Γ j , 
hosting the source point S in the integral representation of (8), has no 
common points with the corresponding actual aperture contour Γ j
, which represents the domain for the coordinates of the observation 
point P in (8). Thus, the kernel function  ( ),SG P  in (9) is regular 
indeed. The second important comment with regard to (9) relates 
to the term functional. Due to the presence of integral operators, it 
sounds reasonable to call the system integral. But the use of this term 
could not be formally justified, because in a classical integral equation, 
both the variables P and Q belong to the same domain. But this is not 
the case for (9). That is why the term functional equations of integral 
type are perhaps the best fit for the equations in (9). Clearly, the 
proposed approach represents a regularizing procedure for the Green's 
function version of the standard boundary integral equation method, 
parameters. Optimal values of those can be found through a numerical 
experiment for each particular problem individually. Our focus will 
also be on another class of problems, that involves the geometry as 
in the setting of (1)-(3), but deals, however, with a different physics. 
Providing specifics let the multiply-connected region 0Γ  be bounded 
with a piecewise-smooth outer contour 0Γ  and smooth inner contours 

, (j 1,m)Γ =j . Let also Ω0 be filled with a material whose conductive 
property is specified by a piecewise constant function λ0 (P). Let, in 
addition, each aperture , ), (j 1 m=Ω j  in Ω0 is filled with a foreign 
homogeneous isotropic material whose conductivity is λj. This gives 
rise to the boundary-value problem

0 0 0[w (P)] 0,P= ∈ΩL 				                   (10)

0 0 0[w (P)] 0, P= ∈ΩB 				                 (11)

[w (P)] 0,P , 1,= ∈Ω =j j jL j m 			               (12)

0 ( ) ( ),P , 1,= ∈ −j jw P w P T j m 			                (13)

0 ( )( ) , , 1,
∂∂

= ∧ ∈ =
∂ ∂

j
j

j j

w Pw P j P T j m
n n

		                  (14)

in ( ) , ( 0, )=jw P j m , stated in the piecewise homogeneous region 

0=
Ω = Ω


m
jj . Here L0 and Lj represent linear second order elliptic 

operators, B0 is a linear first order operator of a boundary condition 
imposed on 0Γ , the factors jΛ  in (14) are defined as j 0j = / (P)λ λΛ , 
and nj are the outward normal to Γ j . Since the coefficients in (10) and 
(12) are not differentiable in Ω, the classical Green's function approach 
does not apply to a problem setting of the kind in (10)-(14). We turn 
therefore to the extension of the Green's function formalism proposed 
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in [5]. It gives rise to the concept of matrix of Green's type.

A semi-analytical procedure proposed for the construction of such 
a matrix

, 0,( , ) ( ( , ))
=

= j i j mG P Q Gi P Q  

for the boundary-value problem stated in (10)-(14) will be described 
below. But prior to that, we highlight a specific feature of G(P,Q) with 
regard to the location of P and Q. Note that, in the ij-th element Gij(P, 
Q) of G(P,Q), P and Q are located in different fragments of Ω. Namely, 
P belongs to Ωi, whilst Q € Ωj. So, in the peripheral elements G0j (P, Q), 
of the first row of G(P; Q), for example, the observation point is located 
in Ω0, while the corresponding inclusion Ωj hosts the source point. 
Consequently, P might coincide with Q only in the main diagonal 
elements Gii(P; Q) of G(P,Q), implying that those elements possess the 
principal singularity related to the fundamental solutions of (10) and 
(12). Whereas, the peripheral elements Gij (P, Q) are regular functions.

To illustrate the essentials of our approach, we consider the steady-
state heat conduction in the half-plane Ω={y>0} filled with an isotropic 
homogeneous material (λ0) and containing an inclusion Ω1, made 
of another isotropic homogeneous material (λ1). The ideal thermal 
contact is assumed on 1Γ , and the Dirichlet condition is imposed on 
y=0. This yield

2 2
0 0

0 12 2

( , ) ( , ) 0, ( , y) \ ,∂ ∂
+ = ∈Ω = Ω Ω

∂ ∂
u x y u x y x

x y                     (15)

2 2
1 1

12 2

( , ) ( , ) 0, ( , y) ,∂ ∂
+ = ∈Ω

∂ ∂
u x y u x y x

x y                                      (16)

0 ( ,0) 0, lim ( , )
δ →±∞

= < ∞ox
u x u x y 			                (17)

and

0 1
0 1 1

(x, y) (x, y)( , y) ( , ), , (x, y) Tλ∂ ∂
= = ∈

∂ ∂
u uu x u x y

n n
                 (18) 

on the half-plane with the inclusion, where λ=λ1=λ0 and

 os(n, x) ^ cos(n, y)∂ ∂ ∂
≡ +

∂ ∂ ∂
c

n n y

 

 Applying the definition introduced in [5] to the matrix of Green's 
type ij i, j 0,1(x, y; , ) (G (x, y; , ))ξ η ξ η ==G   of the problem in (15)-(18), 
we identify the entry ijG (x, y; , )ξ η  of G(x, y; , )ξ η  with the potential 
field, which is generated in Ωi, (i=0;,1) by a point source located in 
Ωj, (j=0; 1). The main-diagonal elements of G(x, y; , )ξ η  must possess 
the logarithmic singularity, where as 01G (x, y; , )ξ η  and 10G (x, y; , )ξ η  
are, as functions of x and y, just harmonic everywhere in Ω0 and Ω1, 
respectively. We look for * *

00G (x, y; , )ξ η  with * *,ξ η  arbitrarily fixed in 
Ω0, in the form



* * * * *
00 00 0(x, y; , ) G(x, y; , ) (x, y), (x, y)ξ η ξ η= + ∈ΩG g                (19)

where  * *G(x, y; , )ξ η  is the classical [9,10] Green's function of the 
Dirichlet problem for the half-plane {y>0}, which brings the required 
logarithmic singularity to * *

00G (x, y; , )ξ η  while the harmonic 
component *

00 (x, y)g  can be found in a form of the modified potential



*
00 in 0(x, y) G(x, y; , ) ( , ), (x, y)ξ η µ ξ η= ∈Ω∫

inF
g                         (20)

where Fin is a fictitious contour embraced by the interfacial line 1Γ . For 
* *

10G (x, y; , )ξ η , with  * *
0,ξ η ∈Ω , we construct the potential

* *
10 ex 1G (x, y; , ) (x, y; , ) ( , )dF , ( , ), (x, y)ξ η φ ξ η µ ξ η ξ η= ∈Ω∫

in
exF

      (21)

where Fex is a fictitious contour embracing  1Γ . The kernel (x, y; , n)ξΦ  
of the above representation is the fundamental solution [1] of the 
Laplace equation in two dimensions. This makes * *

10G (x, y; , )ξ η   
harmonic everywhere in Ω1.

The densities in ( , ) and ( , )µ ξ η µ ξ ηin ex   in (20) and (21) can be 
found from the contact conditions in (18). The first of these yields

 

* *G(x, y; , ) G(x, y; , ) ( , )dF , ( , )ξ η ξ η µ ξ η ξ η+ ∫
in

in inF 

1(x, y; , ) ( , )dF , ( , ) 0, (x, y) Tφ ξ η µ ξ η ξ η− = ∈∫ ex exFex
         (22)

whilst the second condition results in

 * *

in
(x, y, , ) (x, y, , ) ( , )dF ( , )ξ η ξ η µ ξ η ξ η∂ ∂

+
∂ ∂∫

in
inF

G G
n n 

1
(x, y, , ) ( , )dF ( , ), (x, y) Tφ ξ ηλ µ ξ η ξ η∂

= ∈
∂∫

ex
ex exF n

                     (23)

The relations in (22) and (23) represent a system of regular 
functional equations in ( , ) and ( , )µ ξ η µ ξ ηin ex , and can easily be 
solved numerically. Shape and location of the fictitious contours should 
be determined on the case-by-case basis.

So, pro les of the elements * *
00G (x, y; , )ξ η  and * *

10G (x, y; , )ξ η  can 
be computed once an approximate solution to the system in (22) 
and (23) is found, with the density functions ( , ) and ( , )µ ξ η µ ξ ηin ex  
substituted into (20) and (21). As to the other two entries * *

01G (x, y; , )ξ η  
and * *

11G (x, y; , )ξ η  of * *G(x, y; , )ξ η , with the source point * *( , )ξ η   
arbitrarily fixed in Ω1, we express them as



* *
01 in 0(x, y, , ) (x, y, , ) V ( , )dF ( , ), (x, y)ξ η ξ η ξ η ξ η= ∈Ω∫

in
inF

G G

and
* * * * *

11 11 1(x, y; , ) (x, y; , ) g (x, y)ξ η φ ξ η= + ∈ΩG 	                (24)

where
*
11 ex 1g (x, y) (x, y; , ) ( , )dF ( , ), (x, y)φ ξ η ξ η ξ η= ∈Ω∫

ex
exF

V       (25)

The densities in ( , ) and ( , )ξ η ξ ηin exv v  of the potentials in (24) 

and (25) can also be found by virtue of the conditions in (18), which 
yield 



* *
ex 1(x, y; , ) (x, y; , ) ( , )dF ( , ) (x, y; , ) ( , )dF ( , ) 0, (x, y) Tφ ξ η φ ξ η ξ η ξ η ξ η ξ η ξ η+ − = ∈∫ ∫

ex in
ex in inF F

V G V

 and
* *

1
(x, y, , ) (x, y, , ) (x, y; , )( , )dF ( , ) ( , )dF ( , ), (x, y) Tφ ξ η φ ξ η ξ ηξ η ξ η λ ξ η ξ η∂ ∂ ∂

+ = ∈
∂ ∂ ∂∫ ∫ex ex in inFex Fin

GV V
n n n

As soon as the above regular system is solved numerically, one 
can accurately compute profiles of * * * *

01 11G (x, y; , ) (x, y; , )ξ η ξ ηand G  
upon substituting the density functions ( , ) and ( , )ξ η ξ ηin exv v  into 
(24) and (25).The shape and location of Fin and Fex ought to be found 
by a numerical experiment. In light of the superposition principle, we 
can consider the half-plane Ω={y>0} containing an inclusion, if a nite 
number of sources of different intensities are located inside and outside 
of the inclusion.

Computational potential of the described algorithm will be explored 
in Numerical illustrations part, but prior to that a number of resolving 
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parameters hi are defined as 2 2
1 , (i 1, 2)= + =ih v k  

We just present the coefficient 11g (x, )ξn
 of		              

{ 1 1 1x x 2
11 1 1 2 1 2

1

1g (x, ) (h ) (h h )e (h h )e
2

ξ ξξ β λ λ− − + = + + + − 
h h h an e

h

 }1 1x x
1 1 2 1 2(h ) (h h )e (h h )eξ ξβ λ λ+ − − + − + + − 

h h              (31)

Note that a certain analytical effort is recommended as to 
the diagonal elements of (x, y; , )ξ ηG  possessing the logarithmic 
singularity.

To introduce another resolving Green's function, we consider the 
half-plane {0 r , 0 }ϕ πΩ = < < ∞ < <  composed 1 {0 r , 0 }ϕ πΩ = < < ∞ < <  
and pose the problem

2

i2 2

(r, ) (r, )1 1 0, (r, ) , i 1, 2ϕ ϕ ϕ
ϕ

∂ ∂∂   + = ∈Ω = ∂ ∂ ∂ 
i iu ur

r r r r
             (32)

1 20 0
lim u (r, ) , lim u (r, )ϕ ϕ
→ →

< ∞ < ∞
r r

			               (33)

1 2
1 2

(a, ) (a, )(a, ) u (a, ), ϕ ϕϕ ϕ λ∂ ∂
= =

∂ ∂
u uu

r r
                               (34)

1 2 1 2(r,0) u (r,0), (r, ) u (r, ) 0π π= = = =u u 	                (35)

The closed analytical form

 

2 2

11 2 2

1 2 cos( )(r, ; , ) ln
4 2 cos( )

ρ ϕ ψ ρϕ ρ ψ
π ρ ϕ ψ ρ
 − + +

=  − − + 

r rG
r r

4 2 2 2

4 2 2 2

1 2 cos( )ln
1 2 cos( )

λ ρ ϕ ψ ρ
λ ρ ϕ ψ ρ

 − − + +
−  + − − + 

a a r r
a a r r                                     (36)



2 2

12 2 2

2 cos( )(r, ; , ) ln
2 ( 1 2 cos( )

λ ρ ϕ ψ ρϕ ρ ψ
λ λ ρ ϕ ψ ρ

− + +
=

+ − − +
r rG
r r

 ~           (37)



2 2

21 2 2

2 cos( )(r, ; , ) ln
2 ( 1 2 cos( )

λ ρ ϕ ψ ρϕ ρ ψ
λ λ ρ ϕ ψ ρ

− + +
=

+ − − +
r rG
r r

               (38)

and



2 2

22 2 2

1 2 cos( )(r, ; , ) ln
4 2 cos( )

ρ ϕ ψ ρϕ ρ ψ
λ ρ ϕ ψ ρ
 − + +

=  − − + 

r rG
r r

 +

4 2 2 2

4 2 2 2

1 2 cos( )ln
1 2 cos( )

λ ρ ϕ ψ ρ
λ ρ ϕ ψ ρ
− − + +

−
+ − − +

a a r r
a a r r

                                          (39)

of the elements of the matrix of Green's type (32)-(35) can be found 
in [6]. The matrix of Green's type G( , ; , )ϕ ψr p  for the problem in 
 ( )i j

, 1,3
G(x, y; , ) G (x, y; , )ξ η ξ η

=
=

i j  of the boundary-value problem 
2 2

2 2

( , ) ( , ) 0, ( , y) , i 1, 2,3∂ ∂
+ = ∈Ω =

∂ ∂
i i

i
u x y u x y x

x y                               (40)

1 3lim u (x, y) , lim u (x, y)
→∞ →∞

< ∞ < ∞
x x                                                          (41)

1 2
1 2 1 2

( a, y) ( a, y)( a, y) ( a, y),λ λ∂ − ∂ −
− = − =

∂ ∂
u uu u

x x                        (42)

32
2 3 2 3

(a, y)(a, y)(a, y) (a, y),λ λ ∂∂
= =

∂ ∂
uuu u

x x
                             (43)

(x, b)(x,0) 0, 1,2,3∂
= = =

∂
i

i
uu i

y
                                                  (44)

Green's functions  ( );G P Q , representing an essential instrument of the 
algorithm, will be presented in what follows.

Resolving Green's Functions
The classical Green's function of the Dirichlet problem for the 

Laplace equation on the half-plane y>0, which was earlier employed in 
the Description of the GF-MFE procedure part as the resolving Green's 
function for the problem in (15)-(18), will be also used in Numerical 
illustrations.

In another problem setting in Numerical illustrations section, 
we obtain the Green's function for the Laplace equation posed on 
a double-connected region Ω representing the semi-infinite strip 

0 {Re(z) 0, 0 Im(z) b}Ω = > < < , weakened with an aperture. Three 
standard types (Dirichlet, Neumann, and Robin) of boundary 
conditions

0
0

0, 0; 0, 0β β
=

= =

∂ ∂ − = ≥ = = ∂ ∂  y
x y b

u uu u
x y  

are imposed on the outer boundary of Ω. The representation

(z ) (z ) (z ) (z )

(z ) (z ) (z ) (z )

1 1 1 11 1(x, y; , ) ln ln
2 21 1 1 1

ζ ζ ζ ζ

ζ ζ ζ ζ
ξ η

π π

+ − +

− + − −

− − − −
= +

− − − −

p p p p

p p p p

e e e e
G

e e e e 

1

2 (x ) sin ysin , (2n 1) p,p
(v ) 2

β ξ πν νη ν
β

∞

=

− +
− = − =

+∑
n

e v
b v b                               (26)

is implemented for the resolving Green's function in that case. 
The complex variable notations z=x+iy and  = = +iζ ξ η  are 
used for compactness in (26). Its derivation can be found in 
[8]. To introduce another representation, which can potentially 
be used as the resolving Green's function in the GF-MFE, 
consider the semi-infinite ={-a < x < ,  0 < y < b}Ω ∞  composed 

1 2={-a < x < 0,  0 < y < b} and ={0< x < ,  0 < y < b}Ω Ω ∞  and pose the 
following boundary-value problem

1
1 2

( a, y) ( a, y) 0, 0; lim (x, y)β β
→∞

∂ −
− − = ≥ < ∞

∂ x

u u u
x

 

 
1 2

1 2
(0, y) (0, y)(0, y) u (0, y), λ∂ ∂

= =
∂ ∂

u uu
x r

(x, b)(x,0) 0, 1,2∂
= = =

∂
i

i
uu i

y
  			                (29)

for the static Klein-Gordon equations
2 2

2
2 2

( , ) ( , ) (x, y) 0, ( , y) , i 1, 2∂ ∂
+ − = ∈Ω =

∂ ∂
i i

i i i
u x y u x y k u x

x y
               (30)

where the functions u1 (x, y) and u2 (x, y) are defined in Ω1 and Ω2; 
respectively, and λ=λ2/λ1 stays for the relative material conductivity, 
with λ1 and λ2 representing the conductivities of materials Ω1 and Ω2.

Following the extension of the Green's function formalism, we 
obtain the elements G(x, y; , )ξ η  of the matrix of Green's type

 ( )j , 1,2
G(x, y; , ) G i (x, y; , )ξ η ξ η

=
=

i j
 

for the problem setting in (27)-(30) in the form



1

(x, )2 (2n 1)G (x, y; , ) sin sin ,
2

ξ πξ η ν νη
∞

=

−
=

∆∑
n
ij

ij
n

g
y

b b
                    (31)

Where 12h a
1 2 1 1 2 1( ) (h )e (h h ) (h )λ β λ β∆ = + + + − −h h  and the 
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can also be used as a resolving Green's function. The elements 
 i jG (x, y; , )ξ η  of G(x, y; , )ξ η  are obtained   



*
1

(x, )1 (2n 1)G (x, y; , ) sin sin ,
2

ξ πξ η ν νη ν
ν

∞

=

−
= =

∆∑
n
ij

ij
n

g
y

b b
         (45)

where * 4va
1 2 1 2(1 )(1 )e (1 ) (1 )∆ = +Λ +Λ + −Λ +Λ  with 1 2 1 1 3 2/ /λ λ λ λΛ = Λ =and . 

The series coefficient 11g (x, )ξn  for example, in (45) reads as
4va v(x 2a) *

11 1 2 1 2g (x, ) (1 ) (1 )e (1 ) (1 ) e ξξξ − −+ + = −Λ +Λ + +Λ −Λ +∆ 
v xn e   

The convergence rate of the series in (45) is low (1/n) for the 
diagonal elements. To enhance it, one can use the procedure proposed 
in [6] and [7]. This reduces the element  to the computer-friendly	
from



1 1

1 1

(z ) (z ) (z ) (z )
1

11
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(x 2a)
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11

16 (1 ) sin sin }
(1 ) (2n 1)

ν ξ

ν νη
+ +∞

=

∧ − ∧
+

+ ∧ − ∆∑
n

e y  

Where p=π/2b. Along with the complex variables z and ζ we 
introduced the expressions 1 1(x a) iy,and ( ) iζ ξ η= + + = + +z a . 
The component (z )ln 1 ζ−− pe   in the above expression represents the 
singular part of  11(x, y; , )ξ ηG

Numerical Illustrations
Specific computational features of our approach will be monitored. 

We plan, in particular, to figure out how the shape of apertures and 
inclusions a effects the solution accuracy level attained. Our focus will 
also be on the proximity of apertures and inclusions to each other and to 
the contours of considered regions. In addition, we aim at the analysis 
of the algorithm as to the proximity of point sources to contours of 
either apertures or inclusions.

But before going to specifics, a sample problem is considered to 
estimate the accuracy level attainable within the numerical scheme 
suggested in this study, and to accumulate a necessary experience 
for dealing with other problems. In a double-connected region Ω0 
representing the half-plane { x , 0 }Ω −∞ < < ∞ < < ∞y  weakened with 
an elliptic aperture	 Γ .

 
22

0
2 2

(y ) 1−
+ =

yx
p q

 we consider the boundary-value problem

(x,0) 0,u (x, y)ψ= =u T   			                 (46)

for the Laplace equation.

Let Ψ(x, y) be the trace on of a profile * *(x, y; , )ξ ηG  of the Green's 
function of the Dirichlet problem for the half-plane, with the source 
point * *( , )ξ η  arbitrarily fixed inside the aperture. This makes 

* *(x, y; , )ξ ηG  itself, as a function of x and y, the exact solution to the 
problem in (46) in Ω0. The data in Table 1 illustrate the accuracy level 
attained. They were obtained for the parameters:

p=2, q=1, and y0=3. An optimal shape of the fictitious contour  'Γ  
was found as an ellipse centered at (0, y0) with the semi-axes 0:94p 

and 0:93q. The standard trapezoid rule, with 24 uniformly distributed 
on 'Γ  mesh-points, was used to approximately solve the resolving 
functional equation.

With an experience gained while dealing with the above sample 
problem, we go to illustrative examples, and begin with the boundary-
value problem

2

3

1 0, 5 0, 0∂ ∂ = − = = ∂ ∂ 
L

L

u uu L u
x y   		                (47)

4
0, 0= =L T

u u   				                 (48)

stated for the Laplace equation in a double-connected region Ω 
bounded, from outside, with the straight line segments: y=0 (which we 
refer to as L1), x=0 (L2), y=1 (L3), and y=x-0:5 (L4), whilst from inside it 
is bounded with the elliptic contour (Figure 1)

2 2
0 0

2 2

(x x ) ( ) 1− −
+ =

y y
p q

 

which is referred to as Γ . So, the region Ω might be viewed as a right 
trapezoid weakened by the elliptic aperture Γ .

We compute the Green's function (x, y, , )ξ ηG  for the boundary-
value problem in (47){(48) with the aid of the algorithm described in 
Description of the GF-MFE procedure part. The representation from 
(26), with the parameter values of b=1 and β=5; is used in this case 
as the resolving Green's function (x, y, , )ξ ηG  in terms of which the 
function (x, y, , )ξ ηG  itself is expressed as

 

4
1 4(x, y, , ) (x, y, , ) (x, y, , ) ( , )dLξ η ξ η ξ η µ ξ η= + ∫

f
fL

G G G

 


2(x, y, , ) ( , )dT ( , ), (x, y)ξ η µ ξ η ξ η+ ∈Ω∫
f

fT
G

 

where L4f and Γ f  represent corresponding fictitious contours. With 
the above integral representation for (x, y, , )ξ ηG  the conditions in 
(48) result subsequently in a system of functional equations in the 
density functions 1 2( , ) and ( , )µ ξ η µ ξ η .

An issue that makes the problem in (47)-(48) non-trivial for 
numerical implementations is that the L4 fragment crosses the pieces L1 
and L3 of the contour of the semi-infinite strip. But, as our illustrations 

(x, y) (0, 2:00) (0, 1:65) (0, 1:30) (0, 0:95) (0, 0:60) (0, 0:25)
uappr (x, y) .42957 .30003 .21258 .14541 .08824 .03602
uexact(x, y) .42948 .29995 .21251 .14533 .08817 .03593

Table 1: Accuracy level attained for the problem setting in equation 46.
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Figure 1: Greens function profile for mixed problem in a trapezoid–shaped 
region weakened with a circular aperture.
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will show, the algorithm appears to be capable to successfully overcome 
such a hurdle.

Profiles of the Green's function (x, y, , )ξ ηG  computed for a number 
of problem settings in (47)-(48) are presented in Figures 1, 2, and 3 for 
a variety of parameters (x0, y0, p and q) of the elliptic aperture, and 
the source point location. The case with a modest size circular aperture 
and a single source, relatively remote from the exterior boundary of Ω, 
is depicted in Figure 1. The case of a relatively small elliptic aperture, 
with two sources closely located to the aperture's contour, is presented 
in Figure 2, and the case of a quite large elliptic hole at an immediate 
proximity of the exterior boundary is shown in Figure 3. Observing 
the forenamed, one can conclude that the described method appears 
efficient for a quite wide range of applications.

Another set of illustrative examples includes a few problems stated 
in regions having foreign inclusions and weakened with apertures. 
Potential fields, generated by point sources in such regions, are also 
computed using the Green's function modification of the method of 
functional equations. In Figure 4, for example, a profile of (x, y, , )ξ ηG  
is depicted for the half-plane y ≥ 0, having a foreign (λ=0.01) elliptic 
inclusion, which in turn is weakened with an eccentric elliptic hole. 
As to the geometry of the statement, it is forth noting that the hole is 
located quite far from the material interface line, but the source point is 

at a relatively close vicinity of that line.

In Figure 5, we present the case that is nearly similar to the 
previous, except for the location of the hole, which is quite close to the 
material interface line, but it can be seen that the algorithm still shows 
a remarkable potential.

In the case presented in Figure 6, the pro le of a potential field 
generated by a point source is depicted for the half-plane y ≥ 0 hosting 
an elliptic inclusion made of a foreign (λ=0.01) material. The inclusion 
is weakened with a hole whose contour is a smooth convex closed curve

4 4 4
h h(x x ) (y y )− + − = R  

which sometimes is referred to as a fat circle. It is important to note 
that both the source point and the hole's contour are rather remote 
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Figure 2: Two sources closely located to an eccentric elliptic aperture.
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Figure 3: Elliptic aperture closely located to the regions boundary.
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Figure 4: Half- plane hosting an elliptic inclusion weakened with an aperture.
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Figure 5: Elliptic aperture located close to the material interface line.
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from the material interface line. In Figure 7, in contrast, both of them 
are relatively close to the interface line, but this complication does not 
affect our algorithm.

A case of the semi-infinite strip {Re (z)>0, 0<Im (z)<1}, hosting an 
elliptic inclusion made of a foreign (λ=0.1) material and weakened with 
an elliptic aperture, is shown in Figure 8. The boundary conditions are 
imposed on the segments y=0 (L1), x=0 (L2), and y=1 (L3) of the semi-
strip's boundary as: 

1 2

3

0, 0.5 0, 0∂ ∂ = − = = ∂ ∂ 
L L

L

u uu u
x y  

Thus, from the presented illustrations, it follows that the location 
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Figure 8: Green’s function profile for mixed problem in a semi-strip hosting an 
inclusion weakened with an aperture.
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Figure 6: Half- plane hosting an inclusion weakened with a fat circle aperture.

x
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Figure 7: Source and aperture located close to the material interface line.

of a point source as well as the location and the shape of an inclusion or 
an aperture have not been decisive factors for the proposed algorithm.

Concluding Remarks
The data presented and discussed in this study build up a 

confidence in the GF-MFE applied to a broad variety of boundary-
value problems set up in multiply-connected regions for elliptic partial 
differential equations with piecewise constant coefficients. The most 
notable feature, that makes the GF-MFE efficient computationally, 
is the use of resolving Green's functions or matrices of Green's type. 
This significantly reduces the required computer time compared to 
other traditional approaches of the method of boundary integral 
equations, because some of the boundary conditions in the problem 
are taken care of prior to the actual numerical work. Note, however, 
that some computer-friendly forms of the resolving Green's functions 
are required.
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