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Introduction
Cemented hip replacement, as a means to help people suffering 

from hip disorders to regain mobility, is used in one third of the 76,448 
primary total hip replacements (THRs) carried out in the UK in 2012 
[1]. Cemented THRs were used in 91% of patients who were 60 years 
and over and 77% of all primary THR in the UK in 2012 was conducted 
on this age group [1]. Despite the reduction in the use of cemented 
hip implants, Mäkelä et al. reported that the survival of cemented THR 
implants was higher than that of uncemented implants in patients 
aged 65 years or older [2]. The same can be deduced from the 2013 
UK National Joint Register if the metal-on-metal implants are excluded 
from the statistics [1]. 

The rate of revision due to aseptic loosening could be as high as 
75.4% 20 years postoperatively [3]; In addition to bone resorption 
[4-8], poor cementing techniques can lead to premature failure of 
the acetabular components caused by improper mechanical interlock 
between the cement and the bone, as can be detected by radiolucencies 
[9-11]. 

We postulate that, if the stress level in the cement mantle is too 
high, the mechanical interlock between the bone and cement can be 
disrupted and contribute to the loosening process. McCormack et al. 
have shown that loosening of femoral cemented implants can be caused 
by a gradual process of damage accumulation in the form of initiation 
and propagation of numerous micro cracks in the cement which, in 
turn, is related to the level of stress in the cement mantles [12]. The 
damage accumulation process in acrylic bone cement is nonlinear and 
the degree of nonlinearity increases with stress [13].

During normal physiological activities, bone cement used in a THR 
can be subjected to high stress, which can lead to failure, given the low 
tensile strength of bone cement. Cement pegs, created during a THR 
to provide implant stability and to improve the torsional strength of 
the reconstructed acetabulum, can be subjected to high stress levels, 
especially near the neck [14,15], and where failure often occurs in vivo. 
We postulate that implant fixation can be improved if the cement 
mantle is subjected to a smooth stress distribution as opposed to high 
peak stress [14]. 

Coultrup et al.’s computational study showed that a 2-mm-thick 
cement mantle would have a reduced fatigue life as compared to a 
4-mm-thick cement mantle [16]. Their research also showed that a thin 
cement mantle might lead to mechanical overload of the cement-bone
interface, thus suggesting that mechanical factors can contribute to the 
failure of cemented acetabular components. Zant et al. investigated
the fatigue failure in the cement mantle, using a simplified acetabular
replacement model [17]. They reported that high tangential and radial
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Abstract
Background: High stress developed in the cement mantle of a total hip replacement is reported to contribute to 

premature failure of acetabular components. We postulate that stress level is influenced by cement mantle thickness, 
acetabular size, bone quality and body mass index.

Methods: Finite element models of reconstructed hemi pelves of different sizes and acetabular diameters (46, 
52 and 58 mm) were created from CT-Scan data. We investigated the effects of cement mantle thickness (1, 2, 3 and 
4 mm), acetabular size, body mass index (BMI = 20, 25 and 30 kg/m2) and bone quality on stress level developed 
in the cement mantle. 

Findings: Peak tensile stresses in the cement mantle increased with a decrease in cement mantle thickness, 
acetabular size and bone quality and an increase in BMI.

Interpretation: Our results indicate that a 4-mm-thick cement mantle is required in small reconstructed acetabulae 
of ≤ 50-mm diameters, while a 1-mm thick cement mantle can be used on larger reconstructed acetabulae of ≥ 58-
mm diameter. Patients with poor bone quality require at least a 4-mm-thick cement mantle to reduce the risk failure 
caused by high stress level in the cement mantle.
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stress lead to crack propagation in the cement mantle with the same 
characteristics of fatigue damage. They also concluded that cracks in 
the cement mantle may be completely suppressed if the stress level is 
well below the fatigue limit of the cement, suggesting that a lower stress 
could then lead to a more stable acetabular fixation. 

Kumar et al. reported that the cement mantle thickness of the 
femoral component influences stress distribution [18]. Carter et al. [19] 
showed that an increase in the cement mantle thickness from 1 to 3 and 
5 mm caused a reduction in the von Mises stresses in the cement and 
surrounding the cancellous bone. However several investigators have 
associated thick cement mantles with bone necrosis [3,20,21]. 

Previous computational and in vitro studies show that stress 
distributions and torsional strengths of the reconstructed hip joint 
are influenced by the geometry and configurations of the cement pegs 
[14,22-24]. However, our survey of current practice among orthopaedic 
surgeons (454 respondents) shows wide variations in surgical fixation 
techniques [25]. We postulate that bone quality, acetabular size 
and BMI also influence stress levels in the cement mantle. To our 
knowledge, no study has looked specifically at whether the stress 
developed in the cement mantle of a reconstructed hip joint is affected 
by a combination of these factors. This could prove clinically useful 
in helping surgeons optimise the preoperative plan for individual 
patients. Therefore, the aim of this study is to investigate the effects of 
cement mantle thickness, acetabular size, bone quality and body mass 
index on the stress distribution in the cement mantles of reconstructed 
hip, using finite element (FE) method. 

Methods
Geometry 

A hemipelvis dataset, consisting of 200 axial CT-Scan images at 1 
mm intervals, was obtained from the Visible Human data set [26]. These 
images were imported to the commercially-available Mimics software 
v8.1 (Materialise, Leuven, Belgium), which acted as an interface 
between medical imaging and finite element (FE) packages. Separate 
3D volumes of the cortical and cancellous bones were generated, using 
thresholding and region growing tools in Mimics, using the grey and 
Hounsfield values of the CT scan images (ranging from -37 to 1027 
HU). These were exported to I-Deas v11.0 (UGS PLM Softwares, 
Texas, USA) FE pre- and post-processing package to construct a 3D 
hemipelvis model. This model was then scaled up and down to generate 
one larger and one smaller virtual hemipelvis. The three models were 
then virtually reconstructed to produce reamed acetabulae of diameters 
46, 52 (unscaled model) and 58 mm [26].

Virtual surgical fixation of the acetabular component (ultra high 
molecular weight polyethylene smooth cup) was simulated, including 
reaming and drilling of anchorage holes. The acetabulum was virtually 
reamed into a hemispherical bed, which is reported to result in a 
uniform cement mantle, smooth stress distribution and, consequently, 
a stable reconstruction [27,28]. Three 8-mm deep and 8-mm diameter 
anchorage holes were then modelled perpendicular to the bed of the 
acetabulum, one in each of the iliac, pubic and ischial regions, to 
simulate a good cemented surgical fixation [15]. 

Element sizes 

The three reconstructed hemipelves, each consisting of the three 
hip bones, cement mantle, acetabular component and femoral implant, 
were meshed, using 10-noded tetrahedral elements. Each volume 

of the reconstructed hemipelvis was meshed with different element 
sizes to conduct a sensitivity analysis on element size. Element sizes 
were reduced until peak stress results converged and the level of mesh 
refinement no longer affected local stress values by more than 5%. The 
selected element sizes were 1 mm for the cortical bone, 2 mm for the 
cancellous bone, 1 mm for the subchondral bone, 1 mm for the cement 
mantle and pegs, 3 mm for the acetabular component and 3 mm for the 
22-mm Charnley Roundback femoral prosthesis.

The ISB coordinate system (Figure 1) was used to position the 
acetabular component in an abduction angle of 45° and anterversion 
angle of 15° to simulate surgical practice [29]. We simulated an 
increase in the cement mantle thickness by reducing the thickness of 
the acetabular component, as would be the case during surgery. The 
femoral prosthesis was included in the model to ensure a realistic 
introduction of the hip joint reaction force to the reconstructed 
acetabulae. To save on computational time, only the head of the femoral 
implant was simulated. A 22-mm diameter femoral head was used in all 
the models. The element sizes of the different volumes at each interface 
were kept the same to reduce element distortion. 

Material properties

For this comparative study, isotropic and homogeneous properties 
were assumed for all the hip bones, given that the acetabulum is not 
highly anisotropic [30]. Two sets of investigations in relation to bone 
quality were carried out, one simulating patients with normal bone 
quality and the other simulating patients with poor bone quality 
by reducing the bone elastic modulus. The Young’s Modulus and 
Poisson’s ratio, respectively, for the reconstructed hemi pelves were 
taken as; cortical bone: 17 GPa, 0.3; subcondral bone: 1.15 GPa, 0.3; 
cancellous bone: 0.05 GPa, 0.2; cement mantle and pegs: 2 GPa, 0.3; 
acetabular component: 0.7 GPa, 0.3; and femoral implant: 200 GPa, 
0.28 [30-33]. To simulate bones of reduced quality, the elastic modulus 
of the cancellous bone was reduced to 10% of the original and that of 
the cortical bone and subchondral bone to 50% [34].

Boundary conditions

The compressive force was applied to the femoral head at an angle of 
16° to the vertical y-axis [35,36], as defined in the ISB recommendations 
for the hip joint coordinate system [29] (Figure 1). A novel approach, 
whereby the body mass index (BMI) and hemi pelvic acetabular sizes 
were used to compute the corresponding compressive forces, was 
implemented. To our knowledge, there is no data available that relates 
the hip joint compressive forces to acetabular size. We therefore used 
published data on the correlation between the acetabular size and the 
person’s height, based on 18 hemi pelves [37] and the body mass index 
(BMI) equation to calculate the person’s mass for each specific BMIs. 
The BMI equation is given by:

BMI = m/h2

Where h is height in meters and m is body mass in kg.

The compressive force acting on each acetabulum was calculated as 
three times the body weight, the peak hip force calculated at 20% of the 
stance phase when walking at 4 km/hr [38] (Table 1). The forces were 
calculated to simulate patients with BMI of 30. This is because THR 
patients usually have BMIs of 25 kg/m2 and over [39]. BMI values were 
then altered to investigate their effects on the cement mantle stress. 

The nodes situated in the sacro-iliac areas and the pubic support 
areas were fixed in all six degrees of freedom to simulate sacral and 
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Figure 1: Left) Pelvic coordinate system used to position the direction of force acting on a reconstructed hip joint - Illustration of the pelvic coordinate system (XYZ), 
femoral coordinate system (xyz), and the joint coordinate system for the right hip joint (Source: ISB recommendation, 2002). Right) Von Mises stress distribution in 
the cement mantle of a reconstructed total hip replacement with a 46-mm-diameter acetabulum.

Acetabular size (mm) Height of patient, h (m) BMI of patient (kg / m2) Mass of patient m=h2×BMI (kg) Compressive force F=3mg (N)
46 1.460 20 42.63 1255

25 53.29 1568
30 63.95 1882

52 1.642 20 53.92 1587
25 67.40 1984
30 80.88 2380

58 1.825 20 66.61 1960
25 83.27 2451
30 99.92 2941

Table 1: Compressive force acting in the hip joint, calculated from body mass index (BMI). Subjects’ heights for each acetabular size were obtained from the work of 
Thompson ac co-investigators (2000).

pubic support of the pelvic bone [30]. Contact elements were used 
at the subchondral bone and cement mantle interface to represent 
the mechanical interlock between the bone and the cement [40]. A 
diametral clearance of 0.1 mm [41,42] was modelled and frictionless 
contact elements [30] were used at the interface between the femoral 
head implant and the acetabular component. Our sensitivity analyses 
of the effect of frictional moments on the stress distribution in the 
reconstructed hemi-pelves showed only a small relative change of 2-3% 
in the tensile stress level in the cement mantle. Hence, it was reasonable 
to assume frictionless contact between the acetabular component and 
the femoral head implant. The nodes at the interface of the subchondral 
bone and cancellous bone were merged to represent perfect bonding. 
The same process was applied to the cortical and cancellous bone 
interface. 

Since cancellous bone consists of honeycomb structure which 
allows good cement interdigitation during cement pressurization, the 
bonding between the cancellous bone and bone cement was represented 
by merging the nodes at the bone-cement interface. The nodes on the 
outer surface of the acetabular cup were merged with those of the inner 
surface of the cement mantle since this interface rarely debonds. 

Finite element analyses were conducted on the simulated 
reconstructed hip models with acetabular diameters of 46, 52 and 
58 mm to predict stress distribution in the cement mantle, using 
I-DEAS 11.0 pre- and post-processing modules. The parameters that 
were investigated for each model were 1) thickness of cement mantle, 
ranging from 1 to 4 mm, in increment of 1 mm, 2) BMIs of 20, 25 and 30 
kg/m2 and 3) normal and poor bone quality (with 10% reduced elastic 
modulus for the cancellous bone and 50% reduced elastic modulus 
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for the cortical and subchondral bones [34]). These parameters were 
investigated in order to cover a wide spectrum of candidates for 
cemented THR.

Following the FE analyses, stress distributions and peak tensile and 
shear stress in all the models were perdicted, in particular, at the neck 
of the anchorage holes, where failure normally occurs. Tensile stress 
as then compared to a threshold value of 8.25 MPa that represents a 
95% probability of survivorship of the cement mantle over 10 million 
cycles. This threshold value was calculated from the following equation, 
developed by Murphy and Prendergast [13].

3 20.003 0.1154 1.3427 3.9564SP σ σ σ= - + -  

where Ps is the probability of survivorship and σ is the stress developed 
in the cement mantle

In addition, the volume of cement subjected to different stress 
levels were grouped into different categories. The elements within a 
specific stress range category were first identified and then the volume 
occupied by these elements was calculated. The number of cycles to 
cement mantle failure for different stress levels were predicted and 
compiled. The number of cycles to failure, derived by Murphy and 
Prendergrast [13] is given by:

 
σ = -0.4395log10(Nf) + 40.42

where σ is the stress developed in the cement and Nf is the number of 
cycles to failure.

Results for tensile stress developed in each FE model simulating 
BMIs of 20, 25 and 30 kg/m2 with different sizes of acetabulae were also 
compiled and plotted against BMI. For each acetabular size and cement 
mantle thickness, equations were derived to correlate BMI and tensile 
stress in the cement mantle (Table 3). 

Results and Analyses
Effect of acetabular size and cement mantle thickness on 
stress distribution in the reconstructed acetabula and number 
of cycles to failure

When the hemi pelvis was loaded statically, the initial stress 
transfer occurred in the superior quadrant of the acetabulum. This 
pattern was observed in each reconstructed hemi pelvis. FE model with 
different acetabular size and cement mantle thickness. The stress was 
then transferred through the bone to the sacro-iliac joint, as shown in 
Figure 1. Von Mises stress in the cortical bone were approximately 50 

times higher than the stress developed in the cancellous bone. 

Peak von Mises and shear stress developed in the acetabular 
components decreased with an increase in cement mantle thickness. 
For example, for the 46-mm acetabulum, as cement mantle thickness 
increased from 1 to 4 mm, peak von Mises stress in the acetabular 
cup decreased from 8.24 to 7.78 MPa. This trend was observed for all 
acetabulae of different sizes. However, an increase in acetabular size 
increased von Misses stress in the acetabular and femoral icomponents. 
For example, for a 1-mm-thick cement mantle, as acetabular diameter 
increased from 46 to 52 and 56 mm, peak von Mises stress in the cup 
increased from 8.24 to 9.35 and 10.9 MPa, respectively. The same trend 
was observed for shear stress.

An increase in cement mantle thickness decreased the peak tensile 
(maximum principal) stress in the cement mantle. For the 46-mm 
diameter acetabulum and a BMI of 30 kN/m2, an increase in cement 
mantle thickness from 1 to 4 mm reduced the cement mantle peak 
tensile stress from 10.32 to 8.14 MPa (Figure 3). The same trend was 
observed for shear stress. Maximum shear stress decreased with an 
increase in the cement mantle thickness. Peak shear stress as high as 
5.36 MPa was recorded in the 46-mm FE model and 1-mm cement 
mantle thickness (BMI = 30 kg/m2), while peak shear stress of 3.67 MPa 
was recorded for the same size of acetabulum and the same BMI, but 
with a 4-mm thick cement mantle. 

Table 2 displays the peak tensile and shear stress and number 
of cycles to failure for different acetabular sizes and cement mantle 
thickness when BMI is 30 kg/m2. The values in bold and in italic 
represent tensile stress above the threshold value of 8.25 MPa [13]. An 
increase in cement mantle thickness increased the number of cycles 
to cement mantle failure increased. The same trend was observed for 
the different acetabular sizes. The volumetric cumulative frequency 
distribution graphs indicate that stress distribution in the cement 
mantle is improved with an increase mantle thickness. Larger volumes 
of cement mantle with lower stress levels were observed in thicker 
mantles. A typical representation for a 46-mm acetabular size is shown 
in Figure 2. The cumulative frequency distribution curves showed 
that the reconstructed FE hemi pelvic model with 4-mm thick cement 
mantle is more skewed to the left hand side portion of the graph, which 
corresponds to lower stress levels. 

Effect of body mass index on cement mantle stress

An increase in BMI increased tensile stress level in the cement 
mantle, as expected. The same observation was made for different 

Table 2: Tensile stress, shear stress and number of cycles (× 106) to failure in simulated reconstructed hip joints with different acetabular sizes.

BMI = 30 STRESSES IN CEMENT MANTLE (MPA)
Thickness 1mm cement 2mm cement 3mm cement 4mm cement
Acetabular size (mm) Tensile Shear Tensile Shear Tensile Shear Tensile Shear
46 10.32 5.36 10.18 4.84 8.99 3.82 8.14 3.67
Number of cycles to failure (×106) 7.04 7.6 14.1 22.1
52 9.71 4.95 8.20 4.55 7.65 3.73 7.26 3.56
Number of cycles to failure (×106) 9.72 21.4 28.6 35.1
58 8.03 4.5 7.27 3.61 6.81 3.37 6.73 3.21
Number of cycles to failure (×106) 23.4 34.9 44.4 46.3

Table 3: Equations correlating cement mantle tensile stress (σ, MPa) and BMI (x, kg/m2).

Acetabular size (mm) 1-mm cement 2-mm cement 3-mm cement 4-mm cement
46 σ = 0.272x + 2.0733 (R2 = 0.988) σ = 0.298x + 1.1711 (R2 = 0.9936) σ = 0.279x + 0.6217 (R2 = 1) σ = 0.244x + 0.7744 (R2 = 0.9958
52 σ = 0.271x + 1.5283 (R2 = 0.9957) σ = 0.24x + 0.9933 (R2 = 0.9999) σ = 0.242x + 0.41 (R2 = 0.9992) σ = 0.228x + 0.46 (R2 = 0.9963)
58 σ = 0.233x + 1.0183 (R2 = 0.999) σ = 0.236x + 0.2933 (R2 = 0.9775) σ = 0.234x + 0.15 (R2 = 0.9946) σ = 0.21x + 0.44 (R2 = 0.9997)
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Figure 2: A typical set of volumetric cumulative frequency distributions of bone cement at different tensile stress levels for different cement mantle thicknesses –
acetabular size = 46 mm, body mass index = 30 kg/m2.
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Figure 3: A typical pattern of tensile stress distribution in the cement mantle of a reconstructed total hip replacement with a 46-mm-diameter acetabulum and a body 
mass index of 30 kg/m2. Section passes through the anchorage hole modelled in the iliac bone.

acetabular sizes. The equations generated showed that there is a linear 
correlation between tensile stress developed in the cement mantle and 
the corresponding BMI (Table 3). 

Effect of bone material properties on cement mantle stress

Poor bone quality, simulated by reduced elastic moduli, resulted in 
an increase in tensile and shear stress in the hemi pelvis and an increase 
in tensile stress in the cement mantle by 45%. 

Discussion
The main objective of this study was to investigate, by FE method, 

the effect of cement mantle thickness, acetabular size, bone quality and 
BMI on stress developed in cement mantles of simulated reconstructed 
hips. Results of FE analyses showed that these factors influence the peak 
tensile stress values in the cement mantle. Reconstructed hemi pelvic 
models with large acetabular size have lower peak stress developed in 
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the cement mantle compared to those with smaller sizes. This is because 
thicker acetabular components are implanted in larger acetabulae, 
which helps distribute the higher compressive loads. The trend of the 
results indicates that thicker cement mantle could help reduce the level 
of stress generated and improve the probability of survivorship of the 
cement fixation. However, thick cement mantle thickness presents the 
risk of bone necrosis [12,21,22]. 

Our findings agree with the works of Lankester et al. [28], 
Herberts and Malchau, and Carter et al. [3,19]. Lankester et al. [28] 
investigated the optimum thickness for the acetabular cement mantle, 
using a biomechanical analysis. Their study suggests that surgeons 
should aim to achieve a mantle at least 2 mm thick, which agrees with 
our findings for acetabular diameter larger than 52 mm. However, 
our study showed that, for acetabular diameters of 50 mm or less, a 
cement mantle thickness of at least 4 mm is required for long-term 
stable fixation of the acetabular component. This is not in line with the 
study of Lankester et al. [28] who recommended the use of a 2 mm-
thick cement mantle for acetabular cup sizes ranging from 44 mm to 
52 mm. Our findings differ from theirs, possibly because they used 
mahogany blocks to simulate the acetabulum, whereas we modelled 
the whole reconstructed hemi pelvis in a more physiological manner 
to investigate the stress behaviour during the transfer process from the 
cement mantle to the pelvic bone. Unlike our model, the mahogany 
block did not behave as the physiological sandwich construction of the 
cancellous, subchondral and cortical bones. 

Our study also shows that the patient’s bone quality, acetabular 
size and BMI should be taken into consideration when surgically 
reconstructing the acetabulum. An increase in the patient’s BMI 
generated an increase in the stress level developed in the cement mantle, 
as deduced from the derived equations correlating BMI to tensile stress 
in Table 3. These equations could be used by orthopaedic surgeons to 
predict tensile stress in the cement mantle for a particular patient with 
a specific BMI, acetabular size and BMI. If the calculated tensile stress 
is above the threshold value of 8.25 MPa [13], then the surgeon could 
consider increasing the cement mantle thickness or choose a different 
fixation method.

We acknowledge that the FE models could better represent 
physiological conditions by including heterogenous bone properties, 
muscle forces, simulating cyclic loading and using multiple CT scan 
data set to create the hemi pelves with different acetabular sizes. We 
have therefore verified our FE model by conducting a parallel in vitro 
study on the Third Generation synthetic Sawbones (Sawbones Europe 
AB, Malmö, Sweden) [15]. The aim of that study was to investigate 
the effect of cement mantle thickness on the stability of cemented 
reconstructed acetabulum. The overall results showed that, for a 
reconstructed 56-mm-diameter acetabulum, there is less micromotion 
at the bone-cement interface with a 2-mm thick cement mantle, 
compared to an interface with a 1-mm thick cement mantle (Lamvohee, 
2007) [43]. These results also show that thicker cement mantles 
reduce the micromotion, which could lead to a better probability of 
survivorship. Our FE results showed that thicker cement mantles result 
in lower stress levels and higher number of cycles to failure. 

Conclusion
Results of this study show that different methods of fixation should 

be used for patients with different acetabular size, bone quality and 
BMI. The correct cement mantle thickness should be used r to keep 
the stress level below the threshold value of 8.25 MPa. Our results 

suggest that for a large (diameter>58 mm), medium (50-58 mm) and 
small (<50 mm) acetabulum, the minimum cement mantle thickness 
should be 1, 2 and 4 mm, respectively. The equations correlating tensile 
stress in cement mantles to body mass index for different acetabular 
size and cement mantle thickness can be used by orthopaedic surgeons 
as a predictive tool to select the appropriate cement mantle thickness 
for different THR patients. This study also suggest that a cement mantle 
thickness of 4 mm could help reduce cement mantle stress in patients 
with poor bone quality. This ability to make informed decision on 
implant fixation techniques could prove clinically useful in helping 
surgeons optimize the preoperative plan for individual patients.
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