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Abstract

The present investigations sought to correlate the total phenolic contents (TPC) with antioxidant potential, using
in vitro antioxidant evaluation models, of unprocessed soya bean (SB) and its industrial processed beverages (SBB1
and SBB2) as well as unprocessed maize (SM) and its industrial processed beverages (MBB1 and MBB2). The TPC
and antioxidant potential of the samples were measured using standard spectrophotometric methods. The radical
scavenging capacity index (SCI50) defined the concentration, in µg/mL, of the sample required to scavenge 50% of
the investigated radicals. Likewise, AP50 defined the concentration, in µg/mL, of the sample required to reduce 50%
of ferric ion. The TPC of SB, SBB1 and SBB2 was within the range of 0.97 ± 0.02-2.86 ± 0.02 mg gallic acid
equivalent per gram dry sample, and TPC of SM, MBB1 and MBB2 were in the increasing order: SM>MBB1>MBB2.
The TPC of SB, SBB1 and SBB2 and their corresponding SCI50 against NO–, H2O2 and •−OH gave correlation
coefficients between the range: -0.77227-0.338172 units, whereas their corresponding AP50 gave a strong positive
correlation. The TPC of SM, MBB1 and MBB2 and their corresponding SCI50 against NO–, H2O2 and •−OH gave
correlation coefficients between the range: 0.040672-0.51799 units, whereas their corresponding AP50 showed a
strong negative correlation. The study revealed that antioxidant potential was intertwined with the combinatorial
antioxidant peculiarities of the various samples.
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Introduction
Phenolic compounds are of considerable importance in human diets

because of their capacities to scavenge/neutralize cytotoxic reactive
oxygen and nitrogen species (RONS) by donating electrons or
hydrogen atoms to radicals [1-4]. In addition, phenolic compounds
chelate transition metals such as Cu2+, Co2+ and importantly, Fe2+,
which have been implicated in the generation of highly reactive
hydroxyl radicals via the Fenton reaction [2,5]. Fruits, vegetables and
beverages are the major sources of phenolic compounds and contribute
to the dietary intake of natural antioxidants [6,7]. Phenolic compounds
are generally synthesized via the pentose phosphate, phenylpropanoid
and shikimate pathways [2,8,9]. These compounds possess aromatic
rings bearing one or more hydroxyl groups and their structures may
range from that of a simple phenolic molecule to that of a complex
high-molecular weight polymer [4,9,10]. For instance, the flavonoids
(including anthocyanins) and isoflavonoids bear the carbon skeleton
C6-C3-C6 structure and account for more than half of over 8,000
different phenolic compounds [1,3,6,9]. In addition, tannins or tannic
acids are water-soluble polyphenols that are present in many plant
foods [11,12] and may exhibit antioxidant activity [13]. Bioactivity
investigations have shown that the molecular structures, in particular,
number of hydroxyl groups and nature of substituent groups in the
aromatic rings of phenolic compounds are the major determinant of
their antioxidant properties [1,14], which is often referred to as the
structure-activity relationships of phenolic compounds. The chemical
diversity, classification and medicinal potential of phenolic compounds
as well as their inherent toxicity concerns have exhaustively been
reported [2-4,6,7,15-18].

The soya bean (Glycine max) in Europe, also called soybean in
North America, is a leguminous vegetable of the pea family that is
grown in the tropical, subtropical and temperate climates. High quality
protein and lipids are abundant in soya bean, which qualifies it as a
very nutritive plant. Accordingly, the Food and Agricultural
Organization (FAO) classified the plant as an oil seed rather than a
pulse [19]. The carbohydrates and energy values of soya bean have
been reported [20]. Reports also showed that daily intake of processed
soya bean appeared to be one of several beneficial factors responsible
for the health and longevity of Japanese people [21]. Global soya bean
demand is increasing, not only for use as an oil crop and feeds for
livestock and aquaculture, but as a nutritious beverage for human
consumption as well as feedstock for industrial materials and biofuel
[22]. Soya beans are usually processed into soya-based infant formula,
dairy product substitutes, meat alternatives, low-cost substitutes for
meat and poultry products [23-26] as well as production of vodka.
However, soya bean meals often contain anti-nutritional factors like
trypsin inhibitors, saponins, phytoestrogens, glucinins, goitrogens,
lectins and urease [27,28]. Based on recent production estimates, Brazil
(90 million metric tons), United States of America (89.5 million metric
tons), Argentina (52.6 million metric tons) and China (15 million
metric tons) accounted for worldwide major producers of soya bean in
2014 [29].

Maize (Zea mays) or corn is a cereal crop that is grown widely
throughout the world in a range of agro-ecological environment. There
are about 500 species of maize exist in different colours, textures and
grain shapes and sizes. Although maize is a grain crop, it is usually
consumed as vegetable. The grain is rich in vitamins A, C and E,
carbohydrates, essential minerals, dietary fiber and proteins [30]. On a
large scale, maize could be processed into biofuel [30] and as a source
of starch for the production alcoholic and non-alcoholic beverages as

Journal of Nutritional Disorders &
Therapy Chikezie, J Nutr Disorders Ther 2016, 6:4

DOI: 10.4172/2161-0509.1000198

Research Article Open Access

J Nutr Disorders Ther, an open access journal
ISSN:2161-0509

Volume 6 • Issue 4 • 1000198

Jo
ur

na
l o

f N
utr

itional Disorders &
T herapy

ISSN: 2161-0509



well as feeds for livestock [26,30]. According to 2007 reports, FAO
estimated that 158 million hectares of maize were harvested
worldwide. Africa harvested 29 million hectares, of which Nigeria was
the largest producer in sub-Sahara Africa [31]. The United States of
America is the world largest producer of maize, followed by China,
Brazil, Mexico and Argentina [30,32,33]. Maize and cornmeal are
important staple foods for more than 1.2 billion people in sub-Sahara
Africa. Maize can be eaten roasted, boiled or fried. Popcorn consists of
kernels of certain maize varieties that explodes when heated forming
fluffy pieces that are eaten as snacks.

Previous survey showed that the food, wine and agricultural
products processing industries cause the generation of substantial
quantities of phenolic-rich products and by-products, which could be
valuable natural sources of antioxidants [1,34]. Phenolic compounds
mostly present in human diets include phenolic acids, flavonoids and
tannins [3,35]. Some of these products have been the subject of
investigations and have proven to be sources of dietary antioxidants
[1,36]. In view of the increasing consumption of industrial processed
plant foods, either due to dietary preference or for convenience, the
present investigations sought to correlate the total phenolic contents
(TPC) with antioxidant potential, using in vitro antioxidant evaluation
models, of unprocessed soya bean and maize with their corresponding
industrial processed beverages commonly sold in Nigerian markets.

Materials and Methods

Collection of samples
The commercially available soya bean-based beverages (SBB1 and

SBB2) and maize-based beverages (MBB1 and MBB2) were purchased
at the Relief Market, Owerri, Imo State, Nigeria. The manufacturer’s
label showed that the beverages were within 30 days shelf-life from the
date of production. Soya bean (SB) and the sweet corn variety (SM) (Z.
mays var. saccharata) were harvested during the wet season, on the
16th of August, 2015, from Ofkaja Farm at Uruagu-Nnewi, Anambra
State (Latitude 6º20′N; Longitude 7º00′E), Nigeria, which lies on the
rainforest belt. The samples were transported to the laboratory within
24 h, identified and authenticated by Dr. Mbagwu at the Herbarium of
the Department of Plant Science and Biotechnology, Imo State
University, Owerri, Nigeria. The samples have voucher numbers
IMSUH 223 and IMSUH 198 for the SB and SM, respectively.

Compositions of beverages
The major compositions of SBB1, SBB2, MBB1 and MBB2

according to the manufacturers’ labels are presented in Table 1.

Samples Compositions/ingredients per 100 g

SBB1 Carbohydrates (65.5 g), protein (13.0 g), fat (6.6 g), dietary fiber (7.2 g), sodium (580 mg), iron (9.0 mg), calcium (455 mg), vitamin A (1166 IU).

SBB2 Carbohydrates (64.2 g), protein (15.0 g), fat (9.0 g), dietary fiber (7.0 g), sodium (210 mg), potassium (570 mg), calcium (400 mg), phosphorus
(260 mg), linoleic acid (3.4 g), vitamin A (1500 IU), ash (2.3 g)

MBB1 Carbohydrates (80.0 g), protein (7.5 g), fat (0.8 g), dietary fiber (3.0 g), sodium (0.7 g), iron (14.0 mg), vitamin A (450 µg), vitamin B1 (1.2 mg),
vitamin B2 (1.3 mg), vitamin B6 (1.5 mg), vitamin B12 (0.85 µg), folic acid (190 µg).

MBB2 Carbohydrates (85.0 g), protein (6.0 g), fat (1.1 g), sodium (270 mg), iron (16 mg), phosphorous (140 mg), zinc (7.0 mg), vitamin C (50.0 mg),
vitamin D (8.5 µg), niacin (7.0 mg), vitamin E (5.0 mg), pantothenic acid (3.1 mg), thiamin (0.50 mg), vitamin A (608 µg), folic acid (80 µg).

SBB1, SBB2: Soya Bean-Based Beverages; MBB1, MBB2: Maize-Based Beverages

Table 1: Major compositions of soya bean- and maize-based beverages.

Preparation of samples
The grains of SB and SM were removed manually from the cobs and

pods respectively. Next, samples of SB and SM as well as that of their
beverages were dried separately in an oven (Gallenkamp Oven 300
plus series, England) at 60°C until a constant weight was achieved. The
separate samples were ground into powder using the Thomas-Willey
milling machine (ASTM D-3182; India). A 2.0 g of each ground
sample was transferred into corresponding conical flasks containing 10
mL of 99.0% CH3OH (BDH, U.K). The suspensions were shaken
thoroughly and allowed to stand for 30 min, after which the mixtures
were filtered using Whatman № 1 filter paper. The extracts were
concentrated and recovered in a rotary evaporator (Büch Rotavapor
R-200) for 12 h at 50°C, for each procedure, under reduced pressure
[37]. The yields were calculated to be as follows: SB=12.7% (w/w),
SM=13.1% (w/w), SBB1=11.6% (w/w), SBB2=11.5% (w/w),
MBB1=11.8% (w/w) and MBB2=11.1% (w/w). The separate extracts
were reconstituted in corresponding 10 mL phosphate buffered saline
(PBS) solution, osmotically equivalent to 100 g/L PBS; pH=7.4 (90.0 g
NaCl, 17.0 Na2HPO4.2H2O and 2.43 g NaH2PO4.2H2O). Portions of
the individual extracts were measured for TPC. Serial dilutions of the

extracts in the order of 20, 40, 60 and 80 mg/mL were prepared and
used for measurement of their antioxidant activities in vitro.

Total phenolic content
TPC of the extracts were determined using the Folin-Ciocalteu

method as previously described [38]. A 0.1 mL of 20-80 mg/mL (w/v)
of the extracts were added to corresponding 1.0 mL of 7% Na2CO3
solutions and mixed thoroughly. Next, 0.1 mL of Folin-Ciocalteu
reagent was introduced into the mixtures. The final mixture volume
was made up to 2.5 mL using distilled water and was allowed to stand
for 90 min during intermittent shaking. The absorbance of the mixture
was measured at ƛmax=750 nm using a spectrophotometer (Digital
Blood Analyzer; SPECTRONIC 20; Labtech, LabX, Bay Street,
Midland, ON, Canada). The TPC of the samples were obtained by
comparing the absorbance with that of standard gallic acid calibration
curve, and expressed as milligram of gallic acid equivalent per gram
(mg GAE/g) of dry weight of the extracts.
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Antioxidant potential in vitro
The antioxidant potential of the extracts, which defined the capacity

of the extracts to scavenge nitric oxide radical, hydrogen peroxide,
hydroxyl radical and ferric reducing antioxidant power were measured
as previously described [39].

Nitric oxide radical
The procedure was according to previous methods [40] but with

minor modifications. Reaction mixtures containing of 2.0 mL of 10
mM NaN3 in phosphate buffered saline (pH=7.4) and 1.0 mL of
various concentrations (20-80 µg/mL) of the extracts were incubated at
25°C for 150 min. Next, 1.0 mL of 0.33% sulfanilic acid in 20% glacial
CH3COOH was added to 0.3 mL of the incubated solution and was
allowed to stand for 5 min. A 0.5 mL of 0.1% (w/v)
napthylethylenediamine dihydrochloride was added to the mixture
and incubated at 25°C for 30 min. The absorbance was measured at
λmax=540 nm using quercetin as blank [37]. The nitric oxide
scavenging capacity index (NOSCI) of the extracts was calculated thus:NOSCI% = 1− AbsorbanceTestAbsorbanceBlank   × 100 Equation 1

The NOSCI% was expressed as SCI50, which is defined as the
concentration (µg/mL) of the extract required to scavenge 50% of
NO–.

Hydrogen peroxide: Measurement of hydrogen peroxide scavenging
potential was according to the methods of Banerjee et al. [41] but with
minor modifications. Separate volumes of 50 μL of 1.0 mM H2O2 and
100 μL of various concentrations (20-80 µg/mL) of the extracts were
incubated at 25°C for 30 min. A 0.85 mL FOX Reagent (100 μM
xylenol orange, 250 μM ammonium ferrous sulphate and 25 mM
H2SO4) was added to the reaction mixtures and allowed to stand at
25°C for 30 min. The absorbance of ferric-xylenol orange complex of
the mixtures were measured against a blank at λmax=560 nm.

The hydrogen peroxide scavenging capacity index (HPSCI) of the
extracts was calculated thus:HPSCI% = 1− AbsorbanceTestAbsorbanceBlank   × 100 Equation 2

The HPSCI% was expressed as SCI50, which is defined as the
concentration (µg/mL) of the extract required to scavenge 50% of
H2O2.

Hydroxyl radical
The procedure was carried out as previously described [42] but with

minor modification. Briefly, the reaction mixture containing 100 μL of

28 mM 2-deoxyribose, 500 μL of various concentrations (20-80
µg/mL) of the extracts in phosphate buffer (pH=7.4), 200 μL of 200 μM
FeCl3 in 1.04 mM aqueous EDTA (1:1, v/v), 100 μL of 1.0 mM H2O2,
and 100 μL of 1.0 mM ascorbic acid was incubated at 37°C for 1 h. The
reaction was terminated by the addition of 1.0 mL of 28%
trichloroacetic acid (TCA). A 1.0 mL of 10% thiobarbituric acid (TBA)
was added and the mixture was again incubated on a water bath at
80°C for 20 min. After cooling to 25°C, the absorbance the mixtures
were measured at λmax=532 nm against a blank.

The hydroxyl radical scavenging capacity index (HRSCI) of the
extracts was calculated thus:HRSCI% = 1− AbsorbanceTestAbsorbanceBlank   × 100 Equation 3

The HRSCI% was expressed as SCI50, which is defined as the
concentration (µg/mL) of the extract required to scavenge 50% of •
−OH.

Ferric reducing antioxidant power
The ferric (Fe3+) reducing antioxidant power was measured as

previously reported [43] but with minor modifications. Equal volumes
(0.5 mL) of various concentrations (20-80 µg/mL) of the extracts and
1.0% K3Fe(CN)6 with 0.2 M phosphate buffer (pH=6.6) were mixed
and incubated at 50°C in a water bath for 20 min. TCA (0.5 mL) was
added to the mixture and centrifuged at 3000 rpm for 10 min. Finally,
0.5 mL of the supernatant was mixed with equal volume of distilled
water and 0.1 mL of 0.1% FeCl3 solution. The reaction mixture was left
to stand at 25°C for 10 min and the absorbance measured at λmax=700
nm against a blank.

The ferric reducing antioxidant power (FRAP) of the extracts was
calculated thus:FRAP% = 1− AbsorbanceTestAbsorbanceBlank   × 100 Equation 4

The FRAP% was expressed as AP50, which is defined as the
concentration (µg/mL) of the extract required to reduce 50% of FeCl3.

Statistical analysis
The data collected were analyzed by the analysis of variance

(ANOVA) procedure while treatment means were separated by the
least significance difference (LSD) incorporated in the statistical
analysis system (SAS) package of 9.1 (2006 version). Correlation
coefficients were determined using Excel Software (Microsoft, 2010
version).

TPC (mg GAE/g dry sample)

SB SBB1 SBB2 SM MBB1 MBB2

2.86 ± 0.02 0.97 ± 0.02 1.71 ± 0.05 1.35 ± 0.01 0.33 ± 0.01 0.17 ± 0.01

TPC: Total Phenolic Content; SB: Soya Bean; SBB1, SBB2: Soya Bean-Based Beverages; MBB1, MBB2: Maize-Based Beverages. The values are mean (X) ± S.D of
three (n=3) determinations. All values of the means are significantly different at p<0.05 according to LSD.

Table 2: Total phenolic contents of soya bean and maize and their beverages.
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Results
Table 2 showed that the TPC of SB, SBB1 and SBB2 was within the

range of 0.97 ± 0.02-2.86 ± 0.02 mg GAE/g dry sample, in which the
TPC of the samples were in the increasing order: SB>SBB2>SBB1.

Furthermore, the TPC of SM, MBB1 and MBB2 showed significant
difference (p<0.05) and were in the increasing order:
SM>MBB1>MBB2. Overall, the TPC of the various samples showed
significant difference (p<0.05).

Figure 1: Nitric oxide radicals scavenging capacity indices of soya
bean and maize and their beverages. Means denoted by the same
letter are not significantly different at p>0.05 according to LSD.

Figure 1 showed that SCI50 of SB against NO– was significantly
(p<0.05) lower than that of SBB1. Additionally, SCI50 of SBB2 against
NO– was significantly lower (p<0.05) than that of SB. In the same
order described above, the SCI50 of SM against NO– was significantly
lower (p<0.05) than that of MBB1 but significantly higher (p<0.05)
than that of MBB2. Generally, Figure 1 showed that SM and its
industrial processed products (i.e. MBB1 and MBB2) gave significantly
lower (p<0.05) SCI50 against NO– than those of SB and its industrial
processed products (i.e. SBB1 and SBB2).

Figure 2: Hydrogen peroxide scavenging capacity indices of soya
bean and maize and their beverages. Means denoted by the same
letter are not significantly different at p>0.05 according to LSD.

The SCI50 of SB against H2O2 was significantly lower (p<0.05) than
those of SBB1 and SBB2 (Figure 2). Furthermore, the SCI50 of SBB1

and SBB2 against H2O2 showed no significant difference (p>0.05).
Conversely, SCI50 of MBB2 against H2O2 was significantly lower
(p<0.05) than those of SM and MBB1, in which the SCI50 of SM and
MBB1 against H2O2 showed no significant difference (p>0.05).

Overall, SCI50 of SB, SBB1 and SBB2 against H2O2 were
significantly lower (p<0.05) than those of SM and MBB1. However,
SCI50 of MBB2 against H2O2 was not significantly different (p>0.05)
from those of SBB1 and SBB2.

Figure 3: Ferric reducing antioxidant powers of soya bean and
maize and their beverages. Means denoted by the same letter are not
significantly different at p>0.05 according to LSD.

Figure 3 showed that AP50 of SB was not significantly different
(p>0.05) from that of SBB2; whereas that of SBB1 was significantly
lower (p<0.05) than those of SB and SBB2. Likewise, AP50 of MBB1
and MBB2 showed no significant difference (p>0.05) whereas that of
SM was significantly lower (p<0.05) than those of MBB1 and MBB2.

Generally, AP50 of SB, SBB1 and SBB2 were significantly lower
(p<0.05) than those of SM, MBB1 and MBB2.

Figure 4: Hydroxyl radicals scavenging capacity indices of soya bean
and maize and their beverages. Means denoted by the same letter
are not significantly different at p>0.05 according to LSD.

Figure 4 showed that SCI50 of SB, SBB1 and SBB2 against •−OH
were significantly different (p<0.05) and was in the increasing order:
SBB2>SB>SBB1. Similarly, SCI50 of SM, MBB1 and MBB2 against •
−OH was in the increasing order: MBB2>SM>MBB1; p<0.05. Overall,
SCI50 of SM, MBB1 and MBB2 against •−OH were significantly lower
(p<0.05) than those of SB, SBB1 and SBB2.
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Correlation coefficient (r)

Parameters Soya bean and its beverages Maize and its beverages

Nitric oxide radicals -0.24949 0.040672

Hydrogen peroxide -0.77227 0.517909

Ferric reducing antioxidant power 0.863087 -0.87017

Hydroxyl radicals 0.338172 0.064258

Soya bean and its beverages: SB, SBB1 and SBB2; Maize and its beverages: SM, MBB1 and MBB2.

Table 3: Correlation between total phenolic contents and antioxidant capacity indices of soya bean and maize and their beverages.

The TPC of SB, SBB1 and SBB2 and their corresponding SCI50
against NO–, H2O2 and •−OH gave correlation coefficients between
the range: -0.77227 to -0.338172 units (Table 3). Additionally, the TPC
of SB, SBB1 and SBB2 and their corresponding AP50 gave a strong
positive correlation.

The TPC of SM, MBB1 and MBB2 and their corresponding SCI50
against NO–, H2O2 and •−OH gave correlation coefficients between
the range: 0.040672-0.51799 units, whereas TPC of SM, MBB1 and
MBB2 and their corresponding AP50 showed a strong negative
correlation.

Discussion
The present study showed that SB and SM with their corresponding

industrial processed beverages exhibited variations in their TPC, in
which TPC of the unprocessed samples were relatively higher than
those of their corresponding processed samples (Table 2). Previous
studies had reported that the impact of processing and storage of plant
foods may alter their comparative TPC, as observed in berry
processing where myricetin and kaempferol contents were noted to be
more prone to losses than quercetin [1,44]. Likewise, processing raw
apples of different cultivars into juices and sauces at different
temperatures (20-50°C) caused between 19% and 53% losses in TPC in
the finished products [45]. The losses or reductions in TPC in the
beverages were attributed to commercial processing procedures as
previously reported [3,46,47]. Aside the impacts of processing and
storage on TPC, intrinsic factors like genus, and species and cultivars
differences in conjunction with extrinsic factors like agronomic
practices, environmental conditions also dictate the TPC of plant foods
[1,3,47,48].

Phenolics are powerful antioxidants [2,5] and have been proven to
be more potent antioxidants than ascorbic acid, α-tocopherol and the
carotenoids [3,49]. Earlier reports had shown that the levels of
phenolic compounds in plant foods could be a major determinant of
their antioxidant potential [1,50]. Intuitively, unprocessed samples that
contain relatively high TPC ought to exhibit proportionately greater
antioxidant activities than their corresponding processed samples,
exemplified by the greater capacity of SB to scavenge H2O2 than SBB1
and SBB2 (Figure 2), which contained comparatively lower TPC (Table
2). Additionally, extracts with relatively high TPC ought to exhibit
greater FRAP than those that contained lower TPC (Figure 3).
However, the paradox whereby the industrial processed samples, that
contained relatively lower TPC, exhibited greater radical scavenging
capacities compared with the unprocessed samples was as a result of
fortification of the products with antioxidant vitamins A, C and E as

indicated in Table 1, which conformed with previous reported [51,52].
The relatively wide differentials in correlation coefficients between
TPC and antioxidant activities of the various samples, which
corroborated previous results [53-55], were obvious indications that
non-phenolic antioxidant components acted in synergy with phenolic
compounds of the samples at varying capacities in neutralizing the
radicals in vitro. According to previous reports, the total antioxidant
potential of foodstuffs did not depend on their absolute antioxidants
contents but, to a large extent, on the outcomes of synergic and redox
interactions among the various radical neutralizing molecules in the
products [53,56,57]. Additionally, intrinsic factors such as the
molecular configuration of phenolics [4,58] and type of cultivar from
which the phenolic compounds are sourced [59-61] as well as the
presence of interfering elements and antioxidant antagonist, for the
most part, define the antioxidant capacities of phenolic compounds
[54,55].

For instance, the capacities of SB, SBB1 and SBB2 to scavenge H2O2
as well as FRAPs of SM, MBB1 and MBB2 were largely dependent on
their TPC as typified by their corresponding strong negative
correlations. Conversely, FRAPs of SB, SBB1 and SBB2 were not
dictated, to large extent, by their TPC as indicated by the strong
positive correlation between their TPC and AP50 (Table 2). Previous
reports had noted that in the presence of non-phenolic antioxidants,
the antioxidant activities of phenolic compounds were not mutually
exclusive but acted in synergy with their co-antioxidants, and phenolic
compounds were also involved in the regeneration of essential
antioxidant vitamins in biologic systems [2,62,63].

Conclusion
From general principles and definition, the experimentally derived

SCI50 or AP50 are inversely proportional to antioxidant activity of the
sample. The in vitro antioxidant systems used in the present study
revealed that SB and SM with their beverages exhibited differential
FRAP indices as well as antioxidant activities against NO–, H2O2 and •
−OH and, for the most part, their antioxidant potential was
intertwined with the combinatorial antioxidant peculiarities of the
various samples. On a point of caution, measurement of antioxidant
activities of plant foods applying in vitro models, in many instances, do
not always present reproducible outcomes using in vivo evaluation
methods.
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