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Spinors and Spin Networks
A left-handed Weyl 2-spinor is an element of a 2-dimensional 

vector space F with a basis of Clifford variables denoted ψA (A=1,2).

Given such a 2-spinor ψA, the 2 x 2 matrix M acting on ψA gives rise 
to another 2-spinor B

A A BMy y¢ = , summing over repeated indices.

Left-handed and right-handed Weyl spinors are related as follows;

AA F implies A Fy y y*Î = Î 

The representations M → M and M → (M-1)T have the same 
dimensionality and are therefore unitarily equivalent; there is a unitary 
matrix AB ε=εAB such that for all M,

ε=1M ε=(M-1)T where 0 1
1 0

e
æ ö- ÷ç ÷=ç ÷ç ÷çè ø

Defining εAB by ( ) 1 0 1
1 0

ABe
- æ ö- ÷ç ÷=ç ÷ç ÷çè ø

 we have ( ) 1 0 1
1 0

ABe
- æ ö÷ç ÷=ç ÷ç ÷ç-è ø

The matrices εAB and εAB are tensor objects which can be used to 
raise and lower indices in the usual vector and tensor calculus, within 
which left-handed ‘chiral’ Weyl 2-spinors are covariant vectors, and 
right-handed chiral Weyl 2-spinors are contravariant vectors. Denoting 
the dual space as F*. The following calculation illustrates this ‘spinor 
calculus’ for ψ ∈ F* and χ ∈ F;

ψχ=ψAχA=εABψBχA=ε12ψ2χ1+ε21ψ1χ2=ψ2χ1-ψ1χ2

We also define the matrix e  such that the representations

M → M and M → (M-1)T are equivalent, so that ( )1 1 T
M Me e- * *-=  

for all M*

We now consider in this Weyl 2-spinor context the Dirac 4x4 spin 
matrix representation;
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Where σμ=(μ=0,1,2,3) are Pauli 2 × 2 spin matrics.

In this representation, we can show directly that 2 2
0 1 2 3

2 2

0
0
I

i
I

g g l g ´

´
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where I2 × 2 is the 2 × 2 identify matrix 
1 0
0 1
æ ö÷ç ÷ç ÷ç ÷çè ø

.

This Dirac spin operator representation acts on a 4-dimensional 
vector space. Each element of this vector space suitably normalized, is a 
quantum ket state |ψ >; a pure state. Defining g γ5 to be the composite 
matrix operator iγ0γ1γ2γ3, we can write this state |ψ > in the form

( ) ( )5 5
4 4 4 4

1 1
2 2

I Iy g y g y´ ´>= - >+ + > . These correspond to the 

left handed and right handed 2-spinor components of the state;

( ) ( )5 5
4 4 4 4

1 1
2 2L I and R Iy g y y g y´ ´= - = - .

So that ψ=ψL+ ψR

Now we know that ( ) 2 2 2 2 2 25
4 4

2 2 2 2

0 0 2 0
0 0 0 0

I I I
I

I I
g ´ ´ ´

´
´ ´
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Similarly 5
4 4

2 2

0 0
0 2

I
I

g´
´

æ ö÷ç ÷- =ç ÷ç ÷çè ø
.

Thus, the four vector ψL has only two non-zero elements (the first 

two) and is of the form
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 similarly, four vector ψR has only two 

non-zero elements (the last two) and is defined as 1

2

0
0

Ry c
c
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 These then 

correspond to the left handed chiral Weyl 2-spinor
1

2

c
c

æ ö÷ç ÷ç ÷ç ÷çè ø
 and the right 

handed Wely 2-spinor L

R

y
y

æ ö÷ç ÷ç ÷ç ÷çè ø
 which is an element of the vector space 

*E F F= Å .

Assuming planar isotopy, it is possible to associate various locally 
deformable lines in the plane with Weyl 2-spinor calculations, giving 
rise to topological structures called spin networks. As a simple example 

the tensors 10 1 0 1
1 0 1 0

AB
ABande e e e-
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 correspond 
as in Figure 1;
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Abstract
We have developed a mathematically coherent theory addressing a number of open questions concerning 

Loop Quantum Gravity. Our approach develops a discrete space-time and shows that macroscopic space-time is a 
renormalization limiting form. Weaving together a number of our previous results we then prove that quantum states 
invariant under either an external group of local diffeomorphisms of space-time or, by contrast, quantum states 
invariant under the internal action of a compact Lie group are ‘common’, in a well-defined sense. These form the 
building blocks of invariant fields and Lagrangians. A form of N=1 Supersymmetry and noncumulative space – time 
naturally emerges, which predicts a spin-2 massless graviton and its companion graviton.
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( ) ( )

( ) ( ))(
( ) ( ) ( ) ( ){ }

( )( ) ( ) ( ){ }
{ }

( )

2

3

1 000 011 110 101
2

1 0 00 11 1 10 01
2

1 0 00 11 1 10 01
2

1 0 1 00 11 0 1 1 10 01
4
1 000 011 100 111 010 001 110 101
4
1 00 0 1 01 1 0 1
4

y

y U H U H

a a b b

a b

a b

a a b b

a a a a b b b b

a b a b

>= >+ > + >+ >

æç= > >+ > + > >+ >ççè

Þ >= > >+ > + > >+ >

= >+ > >+ > + >- > > >+ >

= >+ >+ >+ >+ >+ >- >- >

= > >+ > + > >+ >+ ((0 0 1 11 1 0a b a b
ì üï ïæï ïç > >- >+ > >- >í ýççï ïèï ïî þ

.

This can then be interpreted in terms of the original vector 0 | y > as;

( ) ( ) ( ) ( )0 0 0 0 0
1 00 00 01 01 10 11 11
4

U y U y y U y U y
ì üï ïï ï> >+ > >+ >+ >+ > >í ýï ïï ïî þ

Comparing the two expressions implies that; 

( ) ( ) ( ) ( )
1 1 1

2 2

1 0 0 1 1 0 0 1
00 ; 01 ; 10 ; 11

0 1 1 0 0 1 1 0
U I U U U

- - -

´
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These are all real unitary matrices thus their inverse is simply the 
transpose matrix in each case;

( ) ( ) ( ) ( )2 2

1 0 0 1 1 0 0 1
00 ; 01 ; 10 ; 11

0 1 1 0 0 1 1 0
U I U U U´
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Thus, we can transport a Quantum State along such a computational 
path.

Note that U(00)=σ0 U(01)=σ1 U(10)=σ3 iU(11)=σ2 where {σj; 
j=0,1,2,3} are the Pauli spin matrices. We identify this transport from 
node to node of the computational spin network with the action of a 
sequence of discrete translations in space-time from one node to the 
next neighbouring node. A discrete path in space-time can be then be 
considered as a series of applications of the translation subgroup of the 
Poincare group.

Discrete Paths in Space-Time
We start by considering classical phase space. Given a dynamical 

system, entropy is defined through considering the phase space of the 
system. The emergent behaviour of this classical system gives rise to 
regions of phase space, each corresponding to similar macro-level 
behaviour. The entropy of such a coarse-grained region is a measure of 
all the different micro configurations constituting that region. A system 
starting in a low entropy state will tend to wander into larger coarse-
grained volumes; hence thermodynamic entropy tends to increase 
over time if the system is isolated, giving rise to the second law of 
thermodynamics. The structure of classical phase space is such that each 
set of initial conditions (xμ, pμ) m m generates a unique solution S(xμ, 
pμ) m m. For a Hamiltonian system it is possible to reformulate classical 
mechanics as a symplectic vector space of solutions, or an equivalent 
set of initial conditions of location and momentum, equipped with a 
bilinear form Ω which ultimately derives from Hamilton’s equations 
of motion;

With ξ≡(x,p) a dimensional vector we have 3 3 3 3

3 3 3 3

0
0
IH where

It
x

x
´ ´

´ ´

é ù¶ ¶ ê ú=W W= ê ú-¶ ¶ ë û
.

This is of the form of a symplectic vector space *V VÅ  where V is a 
real finite vector space with dual V*. The skew-symmetric rank 2 tensor 
Ω then takes the general form;

( ),x x x xh h h h¢ ¢ ¢ ¢W Å Å = -  .

In our case V is the configuration space, V* the (dual) momentum 
space and *V VÅ  the phase space, a roduct vector bundle over V 
with fibre V*. By choosing values such as (1,0,0,0,0,0) we can pull out 
elements;

Their product is then a closed loop which corresponds to a scalar 
λ times the identity matrix with λ=1 in this case. The advantage of this 
approach is that spinor calculations become a sequence of potentially 
simpler topological transformations with connections to knot theory.

Computational Spin Networks
Building on these ideas, we define a computational spin network to 

be a finite quiver consisting of a directed graph with n nodes, where the 
nodes represent entangled spin inputs and a directed link between two 
nodes corresponds to a quantum gate, as we now discuss.

If we represent the basis spin ±½ eigenvectors as the column 

vectors 
1

0
0
æ ö÷ç ÷>=ç ÷ç ÷çè ø

 and 0 1
1 0

U
æ ö÷ç ÷=ç ÷ç ÷çè ø

 then the NOT quantum gate which 

switches |0> to |1> and |1> to |0> corresponds to the unitary matrix 
0 1
1 0

U
æ ö÷ç ÷=ç ÷ç ÷çè ø

. It is easy to check that U|0>=|1 and U|1>=|0. All quantum 

gates correspond in this way to multiplying the input state vector by a 
unitary matrix.

To ease notational clutter, in all that follows we denote the joint 
tensor product state of the spins |x> and |y> as |xy>.

Given the entangled state, ( ) ( ) ( )0
1 10,0 00 11 0 1
2 2

and yb a b>= >+ > >= >+ > ;

Let,

( ) ( ) ( )

( )( ( )

( ) ( )

11 0 0,0 0 0,0 1 0,0
2

1 0 00 11 1 00 11
2
1 000 011 100 111
2

y y b a b b b

a b

a a b b

>= >Ä >= >Ä >+ >Ä

= >Ä >+ > + >Ä >+ >

º >+ > + >+ >

.

Define |y2>=U(CNOT)|y1> mappings;

|00δ > → |00δ>;|01δ> → |01δ>;|10δ> → |10δ> → |11δ> and |11δ> 
→ |10δ> where δ∈ {0,1}

( ) ( )12 000 011 110 101
2

y a a b bÞ >= >+ > + >+ > .

Replacing ( )0
1 0 1
2

y a b>= >+ >  by using the Hadamard unitary 

gate U(H) we have 

( ) ( ) ( ) ( ) ( ){ }0
1 10 1 0 1 0 1

22
U H y U H U Ha b a a b b>= >+ >= >+ > + >- > .

Then we have,

and 

Figure 1: Closed loop which corresponds to a scalar λtimes the identity matrix 
with λ=1.
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( ) 1,0x xh h h h¢ ¢ ¢W Å Å = - .

The Dirac canonical quantisation of elements of phase space 
such as 1h¢  is equivalent to the canonical quantisation; ˆW®W  as a 
(not necessarily bounded) linear operator, and this form of canonical 
quantisation extends smoothly to countably infinite phase space [1].

Given the canonical quantisation; ˆW®W  we can form the Weyl 
unitaries ˆˆ expW i= W . Then closure of linear combinations of these 
Unitarians and their adjoints in the normed operator topology is the 
Weyl algebra.

The extension of Ω to the space of solutions allows us to define an 
inner product on S as ( ) ( ) ( ) ( )( )1 , 2 1 , 2S S i S S*

=-W  where S(1)* is 
the complex conjugate solution. It turns out [1] that this defines an 
inner product on S relative to which a one particle Hilbert space can be 
defined. For a quantum system of bosonic harmonic oscillators, we can 
then assemble a symmetric tensor product Fock space in the usual way, 
using creation and annihilation operators.

An example of the Weyl form in a two dimensional locally flat space-
time is now given for a local algebra O(D), having a representation as 
observables acting on the Hilbert space L2 (x,t) with Lebesgue measure. 
For a small increment of space-time (δx,δt) we consider the Poincare 
Translation subgroup element T (δx, δt): (x,t) → (x +δx, t +δt) and define;

UT(δx,δt)f(x,t)=f(x-δx,t+δt) for f(x,t)∈ L2(x,t).

Then U is a local group homomorphism of the translation group T 
as observables acting on L2(x,t). Define also;

Vδt=UT(0,δt);Vδx=UT(δx,0)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0, 0,

0,

, , ,

, ,

t T Tt t t

tt t t t tT t t

V V f x t U U f x t f x t t t

U f x t V f x t V V V
d d d d

dd d d d dd d

d d¢ ¢

¢ ¢ ¢¢ + ++

¢Þ = = - -

= = Þ =
.

A similar result applies for Vδx, by symmetry.

Now introduce a deformation of the form; T(δx,0) → Zδxf(x,t)=exp(it 
δx)f(x-δx,t).

The mappings V and Z are unitary representations on L2(x,t) and so 
also is their product: V × W: (δx,δt) → T(δx,δt) → Vδx,Zδx

Then we have;

VδtZδxf(x,t)=Vδt exp(itδx)f(x-δx,t)

=exp(itδ)f(x-δx,t)

ZδxVδtf(x,t)=Zδx f(x,t-δt)

=exp(i(t-δt)δx)f(x-δx,t-δt)

=exp(-iδtδx) VδtZδxf(x,t)

VδtZδx=exp(-iδtδx) VδtZδx 

Then T(δx, δt) → (Zδx, Vδt)is a local Weyl representation of the 
CCR on L2(x,t). By the Stone-von Neumann theorem, the resulting 
C*-algebra and its weak closure as a von Neumann algebra must be 
unitarily isomorphic to Wald’s equivalent ‘algebraic approach’ to 
quantum field construction and his Weyl Algebra, since we can assume 
all relevant Hilbert spaces are separable in application to observed real 
systems [1].

This example indicates that a continuous local group 
homomorphism from a neighbourhood of the identity of T to a 
neighbourhood of the identity of the set of observables in O(D) exists as 

a Weyl algebra. It can be easily extended to 4 dimensions by replacing 
x by the 3-vector x=(x1, x2, x3).

A discrete path in space-time, as we have so far generated it, can be 
considered as a set of linked causally directed intervals each of fractal 
dimension 1 in renormalized smooth space-time. More formally, we 
define the path as a series of n linked increments a(j) with varying 
direction relative to a local forward light cone, such that the path 
begins at x(0) and ends at x(1), with T (a(j)): x → x+ a(j) elements of the 
translation subgroup T. The total path is then generated by the product

( )( ) ( )
1

0
j n

j

T a j x
=

=
Õ  with the final end point ( ) ( ) ( )

1

1 0
j n

j

x x a j
=

=

= +å . For a 

fixed initial point x(0) we can identify this path with the finite group 

product ( )( )
1

j n

j

T a j T
=

=

ÎÕ . We can now construct a space-time, assumed 

non-commutative at some energy level such as the Planck regime, with 
non-commutative algebraic structure at each event point x of space-
time, forming the fibre algebra A(x). This structure then corresponds, 
we assume, to the single fibre of a principal fibre bundle. A gauge group 
of automorphisms corresponding to the translation subgroup T of 
the Poincare group acts on each fibre algebra locally, while a section 
through this bundle is then a quantum field of the form {A(x); x ∈ M} 
with M the renormalisation limit macroscopic space-time manifold to 
be constructed in the next section. In addition, we assume a local algebra 
O(D) corresponding to the algebra of sections of such a principal fibre 
bundle with base space a finite and bounded subset of space-time, 
D Ì M. The algebraic operations of addition and multiplication are 
assumed defined fibre wise for this algebra of sections. Now let there be 
given a continuous local group homomorphism from a neighbourhood 
V of the identity of T to the neighbourhood W of the identity of the 
set of observables in O(D) as a Weyl representation of the CCR. Then 
a discrete classical path CP in space-time can be lifted to a quantum 
field section QP through O(D). This we proved in reference [2]; we 
also proved that the path QP is uniquely determined, and that there is 
a projection π from the fibre bundle O(D) mapping the quantum field 
back to the path CP.

Renormalisation of Discrete Paths in Space-Time
The principle of relativity is captured within the assumptions of 

the Riemannian geometry of 4-manifolds, where formulae equating a 
tensor expression to zero remain invariant under local diffeomorphism 
transformations. It is a natural extension of these ideas to additionally 
postulate that the scales of measurement inscribed on the clocks 
or measuring rods used by an observer should also not be absolute. 
Mathematically this can be captured by the additional requirement 
that the tensor formulae should be invariant under transformations 
of scale. From this perspective a relativistic quantum system is a scale 
free system. If Φ is the function transforming system inputs to system 
outputs, then for a scale-free system, Φ is invariant under a change of scale.

Under the assumptions of such a scale-invariant relativity, let us 
consider a discrete closed loop in space-time; corresponding to two 
discrete non-oriented paths sharing the same end points. Then it turns out 
[2] that this loop is renormalisable and has a finite limit corresponding to 
the curve fractal dimension as a curve in macroscopic space-time.

Quantum States Invariant Under the Action of Local 
Space-Time Diffeomorphisms
Gravity states, the graviton and supersymmetric graviton

We now investigate in more depth the subgroup T of the 
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Poincare group consisting of translations of macroscopic space-time 
as a gauge group of automorphisms. We define a representation of 
T as a group of automorphisms of a local fibre algebra A(x) which 
we assume to be isomorphic to a von Neumann algebra with trivial 
centre acting on a separable Hilbert space, rooted at the event point x. 
Consider then the subgroup T acting on A(x). These actions generate 
the local diffeomorphisms of General Relativity. If we make the minimal 
assumption that this representation is weakly measurable; i.e. the mapping: 
is Haarmeasurable for all relevant values of A, x and y; then the argument 
[3] shows that the mapping g → αg is norm continuous. Since the 
translational group is both abelian and connected, it follows [4] that 
each αgis an inner automorphism of A and the corresponding unitary 
Wg has a spectrum contained in the positive half plane. In fact, we have;

( ) { } ( )
1

2 21;Re 4
2g g gWg z z and is b b aÌ ³ = - - .

Moreover, if S denotes the von Neumann sub algebra generated 
by {Wg; g ∈ T}, then the set of unitaries { Wg; g ∈ T } is a commuting 
set within A(x). Thus, S is a commutative sub algebra and contains the 
identity I of A(x), since if id is the group identity then id I=Wid.A(x) 
is a factor, S thus contains the centre Z of A(x). Such a commutative 
quantum operator algebra is equivalent to the set of continuous 
functions on a compact space and this equivalence arises through the 
Gelfand transform;

( ) ( )ˆ ˆA Awith A Ar r® =  ρ a continuous complex valued 
homomorphism.

The carrier space ΦS of S is the set of all such continuous complex 
valued homomorphism on S. and is thus topologically a Stonean space, 
as is ΦZ and the restriction map: π: ΦS → ΦZ is a continuous surjection. 
We then have, as we will prove, a lifting

( ) ( )( ) ( )ˆ ˆ ;g g g SU W f z Wr r r r= ÎF .

If we define the equivalence z z
r r r r¢ ¢» Û =  then by the 

extended form of the Stone-Weierstrass theorem [5] the centre Z 
corresponds to those elements of ΦS constant on each equivalence 

class, Applying this to the Gelfand transform ( ) ( )( )ˆ ˆVg Wg f zr r=  

it follows that V̂g  corresponds to an element Vg of the centre. Since 
A(x) is a factor, this means that Vg=n (g)I with v(g) a complex number 
defining a coboundary, and that for each g ∈ T; Ug implements αg. In 
addition, the mapping g → Ug is a group homomorphism for if we set;

Rg,h=UgUhU
*
gh then for an operator,A, Rg,hAR*

g,h=Ug UhU
*
gh 

AUghU
*
hU

*
g=αg αhα-1

gh(A)=A. Hence Rg,h is a unitary in the centre. In 
fact Rg,h=λ (g,h)I where λ(g, h) is a 2-cocycle. The fact that the lifting 
f: ΦZ → ΦS has the property ( ) ( ) Zf fp r r r= =

 for ρ ∈ ΦZ means 

that ( ) ( )( ), ,
ˆ ˆ

g h g hR R fr r=  since the domain of ,
ˆ

g hR , is ΦZ. But then 

we have that; ( )( )ˆ 1gU f r = ,∀g ∈ ΦZ thus ( ),
ˆ 1g hR r =  ∀ρ ∈ ΦZ; the 

2-cocycle is trivial. Therefore Rg,h=I ∀g,h ∈ G, and g → Ug is a group 
representation by unitaries in the fibre algebra, which turns out to be 
norm continuous, due to their spectral characteristics [4]. We now 
show that the lifting follows from the Axiom of Choice, in the guise 
of the equivalent Zorn’s Lemma, applied to the strange topological 
properties of Stonean spaces. We can set it in the context of lifting 
from a totally disconnected, compact Hausdorff base space B into a 
containing fibre bundle K having a Stonean topology.

Lifting from the base space B of a Stonean fibre bundle K

We prove first the fact that the projection π: K → B is an open 

mapping if and only if for each non-trivial open subset E of K, π(E) is 
not a nowhere dense subset of the base space B. One way is trivial for if 
π is an open mapping then π(E) is a non-trivial open set so cannot be 
nowhere dense.

Conversely, the Stonean topology of the fibre bundle K is compact 
and totally disconnected, with a basis of ‘clopen’ sets (i.e. sets which are 
both closed and open). Thus, every open set is a union of such clopen 
sets, and it suffices to show that if V is clopen in K, then π(V) is open 
in B. Since V is clopen, it is a closed and thus compact subset of K, and 
π is continuous, thus π (V) is compact. If we define Y=π(V)\intπ(V); 
this a closed set with empty interior thus Y is a nowhere dense set and 
is the image of an open set; Y=π(V\ π-1(int π(V)), using the fact that the 
projection mapping π is continuous and surjective. It follows that Y is 
void and π(V)=int π(V).

Thus π(V) is open and π is an open mapping.

A unique quantum field isomorphic to the base space

Consider now the set Φ of all compact subsets S of K such that π 
(S)=B. Then Φ is non-void, partially ordered by set inclusion, and every 
decreasing chain has a lower bound. It follows from Zorn’s Lemma that 
Φ has a smallest element K(0). We show that;

• π|K(0) is an open mapping;

• π|K(0) is bijective

This will prove the result for the unique quantum field is then 
f=(π|K(0))

-1, the Axiom of Choice selecting out K(0) as a unique minimal 
section through the fibre bundle K.

(π|K(0) is an open mapping;

Consider then V to be a non-trivial open set in K(0). By definition, 
π|K(0) is surjective, thus; ( ) ( )( )\ 0 \B V K Vp pÌ . Now K(0)\V is a closed 
thus compact subset of K, and π|K(0) is continuous, thus π(K(0) \V) is 
compact. It follows that ( )( ) ( )( )\ 0 \B B V K Vp p

-
= Ì -Ì. If π(V) is 

nowhere dense, then;

( )( ) ( ) ( )( )\ int \ 0 \B B V B V K Vp p p
- -

= Ì Ì , a closed, compact set.

This is a contradiction due to minimality of the set K(0). Thus π(V) 
cannot be a nowhere dense set. From our earlier discussion, this is 
enough to show that π|K(0) is an open mapping.

π|K(0) is injective K p;

Assume that π|K(0) is not injective, then ∃x1,x2,x1≠x2 ∈ K with 
π(x1)=π(x2).

Since K(0) is a Hausdorff topological space with a basis of clopen 
sets, there is a clopen subset V of K(0) containing x1 but not x2. Then;

π(V) is also clopen and ( )( ) ( )1 \ 0V V Kp p- Ì ,and p (x)=p (x)Îp (V), 
thus x Îp-p (V) \V. It follows that W=p-1 (p (V)) \V is a non-trivial 
open set, and W and V are disjoint, with ( ) ( )( )\ 0 \B V K Wp pÌ  and 
( ) ( )( ) ( )( )0 \ 0 \V K W K W Bp p pÌ Þ = .

This again contradicts the minimality of K(0). Thus π|K(0) is a 
continuous bijection, and the required lifting is given by f=(π|K(0))

-1.

Pure gravity states

We define a separating T-invariant quantum state f to be a such 
that given an observable A in the fibre algebra A(x),

( ) 0 0f A A A* = Þ = .
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We call such states gravity states, motivated by the classical case. 
If a tensor or the difference between two tensors of the same covariant 
and contra variant class is equal to zero for all local inertial reference 
frames, then it is zero for all curvilinear reference frames, by the 
covariance assumptions of General Relativity.

Since the Hilbert space F(x) on which the fibre algebra A(x) acts is 
separable, by definition, there is a countable dense subset x(n). Defining 

( ) ( ) ( )
1 1

; lim 1
n

x n x n x jn
f a w a

¥

®¥
= =å å  clearly f is a separating state, and then 

each element of the weak*-closed convex hull { };gco f g TaD= Î  
is also separating, for if;

( ) ( )( ) ( )( ) ( )( )0 ; 0 0j j j
j

j f g A A g T f gj A A g A Al a a a* * *= Þ$ Î = Þ =å   ,

since is separating. Applying the automorphism ( )1 0jg A Aa - *Þ = . 

Additionally, if fn(A*A) → g(A*A) and fn(A*A)=0 then g(A*A). Thus 
every element of ∆ is separating.

It follows, by applying the Hajian-Kakutani fixed point theorem 
[6] to the weak*-compact set Δ that it contains an invariant state. 
Thus, there is a separating T-invariant quantum state. If f is an extreme 
point of the separating T-invariant quantum states, let π be the GNS 
representation then clearly π is an algebraic isomorphism since the 
kernel of f is {0}.

Defining;

{Ug;g ∈ G,Ugπ(A)ξ=π(αg(A)ξ}

On the pre-Hilbert space of the GNS representation of f; these 
extend to the ‘Segal unitaries’ associated with f [4]. The mapping 
g → Ug is a unitary representation implementing α: g → αg. If the 
mapping α: g → αg is weakly measurable in the GNS representation 
then by our previous results [3,4] it is norm continuous and the 
mapping g → Ug implementing α: g → αg is also norm continuous 
with Ug ∈ π(A(x))∀g ∈ T We have, from previous work [6,7] that the 
automorphic representation α: g → αg of T acts ergodically if and only if 

( )( ) { };A x Ug g Tp ¢Î
 is trivial, containing only the projections 0 and 

I and thus consisting of the set of complex multiples of I.

We also have;

( )( ) { } ( )( ) { }; ;g gJ A x U g T J A x U g Tp p
ì üï ï¢ ¢ï ï ¢Î = Îí ýï ïï ïî þ

 

.

with J2=1. It follows that the representation α: g → αg of T acts 
ergodically if and only if ( )( ) { };A x Ug g Tp ¢ ¢Î  is also trivial. But for 

this case we have also shown that Ug ∈π(A(x))∀g ∈ T and thus if E is 

a projection in ( )( )A xp ¢  then clearly ( )( ) { } { };gE A x U g T Ip l¢¢Î Î = . 
The GNS representation is thus irreducible in the sense of Murray-von 
Neumann, corresponding to f being a pure quantum state.

The supersymmetric massless graviton

The Poincare group is a locally compact Lie group with 10 
generators, and the translational group is an abelian subgroup generated 
by the energy-momentum 4-vector Pμ. This has the property that its 
square P2=PμPμ=E2 lies in the centre of the Lie algebra. If we consider 
the energy-momentum vector in normalized units (c=1) then P2 has 
the form P2=m2I, where m is the mass-energy of the corresponding 
particle. In other words, a factorial representation of the Translational 
group corresponds to a particle with fixed mass m and undetermined 
spin. We can consider two cases;

(a). P2=m2.I; m2≠ 0 corresponding to a multiplet of particles each of 
the same positive mass but with different spin values;

(b). P2=0.I. This factorial representation corresponds to a massless 
particle such as a photon or a graviton, with a Supersymmetric massless 
fermion partner.

N=1 Supersymmetry

For either case we need to add an additional element, normally 
denoted Qα, to the Lie algebra, to represent the spread of spin values. In 
any representation, these are all linear operators, including the identity 
operator I, and thus form an algebra of such operators. Such a factorial 
representation corresponding to a set of particles, must contain equal 
numbers of bosons and fermions [8]. With certain assumptions, such 
a representation where the centre of the algebra is non-trivial can 
be decomposed into a direct integral of factorial representations, as 
discussed [9].

We can develop a locally linear representation of these 
operators, which is a faithful representation of the Super space 
Lie Algebra [8] by adding a pair of Grassmann variables to the 
algebraic formulation. We can then generate a standard Lie 
algebra while mixing commutates anticommutators. For example, 
if ξ and x  have the Grassmann property so that xx xx=- ,then; 

( ) ( ) { }, ,A B A B B A A B B A A BQ Q Q Q Q Q Q Q Q Q Q Qx x x x x x xx xxé ù = - = + =ê úë û
,

Note that we also require that these Grassmann variables commute 
with the operators Q. A typical element of the corresponding Lie group 
G is then of the form;

( ) ( ), , expG x i Q Q x Pm m
mx x x x= + = .

Here, xμ is an event point in locally flat space-time, thus we can 
think of the Grassmann variables as a vector at the point xm. With this 
structure, the Super space is a vector bundle and the locally flat group 
multiplication structure is of the following form;

( ) ( ) ( ), , , , , ,G x G a G x a i im n m n m mq q x x xs q qs x q x q x= + - + + + . This 

follows from the Grassmannian properties, since 2 2 0q q-= =  for 
example.

We can interpret this group product as shifting the locus of the 
Grassmann vector in space-time from x to x a i im m m m mxs q qs x+ - +  
together with additive change to the Grassmann vector at this point. 
If this shift is infinitesimal, then, as in normal Lie group theory, we 
can consider the tangent plane around the group element ( ), ,G am x x
, giving the following local representation of the Lie group generators 
on the tangent plane to the Riemannian space-time manifold at the 
event point (av):

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( );

a a

A Aa a a a
A A

P a i i
x

iQ a i iQ a i
x x

n n

n n n n

n
m mm

n m n m
m ms q qs

q q

¶
= = ¶

¶
¶ ¶ ¶ ¶

= - =- +
¶ ¶ ¶ ¶

.

In this form the generators satisfy all the algebraic relationships of 
the Super symmetric extension of the local translation Lie algebra. Thus, 
this representation is locally an algebraic isomorphism onto the curved 
Riemannian manifold M and the piecewise local representations;

( ) ( ) ( )a a
P a i i

x n n
n

m mm

¶
= = ¶

¶

are the generators of the local relativistic diffeomorphisms around the 
event points of M. The manifold is assumed smoothly differentiable; 
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we focus on the flat tangent plane and assume Dirac relativistic spinor 
theory applies. We therefore assume that this operator representation 
acts on a 4-dimensional Hilbert space H of (spinor) wave functions; 
and we denote by ψ an element of the Hilbert space.

Within these assumptions, from earlier, we can express this state 
y in the form;

( ) ( )5 5
4 4 4 4

1 1
2 2 L RI Iy g y g y y y´ ´= - + + = + .

If we define the Dirac adjoint function, 0y y g+=  where ψ+=(ψ*)T then 
taking complex conjugates of both sides of the massless Dirac equation 
followed by transposition yields the identity:

(ψ*)T(-i(γμ*)T (∂μ+ieAμ)=0

Exploiting the fact that (γ0)2=I4 × 4 leads to the equation:

( ) 0T Ti ieAm
m mg y- ¶ + = .

The matrices (-γμT) also satisfy the Clifford algebra relations and 
there is a 4x4 non-singular matrix C such that C-1γμC=-γμT. We can 
thus define the charge conjugate spinor

c TCy y= .

In the Weyl representation we take;
2

0 2
0

0
C i i

s
g g

s

æ ö- ÷ç ÷= = ç ÷ç ÷çè ø
 where σ2 is the second Pauli matrix 

0
0
i

i
æ ö- ÷ç ÷ç ÷ç ÷çè ø

.

With ψ the spinor wave function A
A

j j
c c

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 we have

Now note that;

( ) ( )AA AA andj j j c c c
*** = = = =

 

.

Thus

( )
( )

0 1
1 02

2 0 1
1 0

A A
AB BABc

BABAB
AA

i H
c

e c ce cs c
y

s j ce je jj

*
*

*

* *
*

æ öæ ö- ÷ç ÷ç ÷÷çç ÷ æ ö÷çç æ ö÷÷ç æ ö÷æ ö ççè ø- ÷ ÷÷ ÷ç÷ ç çç ç ÷ ÷÷ ÷÷ çç ç= = = = = Îç ç ÷ ÷÷ ÷÷ çç ç÷ç ç ÷÷ ÷÷ç ÷ç çæ ö ÷ ÷ç çç ÷è ø è øè ø÷÷ ç÷çç è ø÷÷çç ÷÷çç ÷÷ç ÷ç -è øè ø



 

 

where the ε matrices are the spinor metric

The mass zero case as a graded lie algebra

We start with the properties of a Z2-graded Lie algebra 0 1L L L= Å  
where L0 is the Lie algebra spanned by the generators Pμ(μ=0,1, 2,3) and 
L1 is spanned by the spinor charge generators Qα (α=0,1,2,3).

From the definition of a Z2-graded Lie algebra L;

Pμ ∈ L0,Qα ∈ L1

( ) ( )0 1, 1 , 0P Q P Q P Q Q P P Q Q P P Qm a m a m a a m m a a m m a
´ é ù® = - - = - = =ê úë û

.

Similarly,

We also have ( ) { }1 11 , ,Q Q Q Q Q Q Q Q Q Q Q Qa b a b b a a b b a a b
´

= - - = + =  
the anticommutator. Since Qα is a non-Hermitian operator (by 
construction), we can also consider the complex conjugate Dirac 
4-spinor Q Fb Î  . To resolve differences in the literature we assume
Q Qb b= .

To constrain the number of options it is convenient at this stage 
to assume;

c TQ Q CQ= = .

Thus ( ) ( )2T TCQ C Q Q= =-  since C2=-1.

Hence TQ C Q=  since CT=-C

Following now the logic [8] in general, we consider from the Z2 
grading,

{Qα,Qβ}=Qα,Qβ+QβQα=a(γμC)

Multiplying from the right by C;QαQβCβδ+QβCβδQα=α(γμ)
αγCγβCβδPμ=-α(γμ)αδPμ

Hence Qα(QTC)δ+(QTC)δQα=-α(γμ)αδPμ

Thus, { } ( ),
a

Q Q a Pm
a b md

g=- .

We assume the operators, ,Q Q  are Marjorana 4-spinors; then in 
2-spinor notation we can simply replace the Dirac γ matrices with their 
equivalent Pauli matrices yielding the following relationship;

{ } ( ),
AB

Q Q a Pm
a b ms=-



,                   (1)

Similarly, we can show that, for 4-spinors, 
{ } ( )1,A BQ Q a C Pm

mab
g-=-



.

Hence in 2-spinor notation, { } ( )1,A B AB
Q Q a C Pm

ms-=-




.

Since all the latter equations are relativistically invariant, we can 
transform them to the rest frame where Pμ=(E,0,0,0)=(m,0,0,0) with 
the speed of light normalised at c=1.

With these values of Pμ in equation (1) above we have

{ } 0
0,A B ABQ Q a Ps=-

 

.

Hence { } 0 0 0
0 0,A B BA AB BAQ Q a P aPs s s=- =-

   

.

Taking 1, 1A B= =   we have { } 0
1 01 11,Q Q aPs =-

 

.

Similarly { } 0
2 02 22,Q Q aPs =-

 

.

Since 0 0
11 22 1s s= =
 

 we have { } { }1 2 01 2, , 2Q Q Q Q aP+ =-
 

.

For consistency with the current literature, we assume the constant 
a=-1.

Thus, we have the quantum operator equality;

{ } { }1 2 01 2, , 2Q Q Q Q P+ =
 

.

The left-hand side of this expression is a positive definite quantum 
operator thus for y an element of the Hilbert space;

If ψ is the vacuum state then, <ψ,P 0ψ>0 is equivalent to 
1 21 22 , 2 . 0Q Q Q Qy y y y< >+ < >=

 

 Since, for 2-spinors, we can rewrite this 

as: A Aj j* =


 we can rewrite this as: 2<ψ,Q1Q1
*ψ>+2<ψ,Q2Q2

*ψ>=0 

Thus 2 2
1 22 2 0Q Qy y+ = , from which we deduce that 

Q1|ψ>=Q2|ψ>=0 and also 

( ) ( ) ( ) ( ) ( )1 2 01 2 1 20 0Q Q Q Q Q Q Py y y yy y w w w w wy>= >= Þ = = = = =
   

.

Factorial representations of the 2 Z graded lie algebra

The extension of the space L0 to the space 0 1L L L= Å  maintains P2 
as an element of the centre;
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2 2, 0 , A
AP Q P Qé ùé ù = =ê ú ê úë û ë û

 .

In a factorial representation π of the Z2 graded algebra, it follows 
that π(P2)=m2I, fixing the mass m of all particles in this representation. 
However, the spins of the particles in this representation are not fixed 
at a common value. In this factorial 2-spinor representation, we have, 
from earlier, the algebraic identity;

{ },
ABA BQ Q Pm

ms=




.

With P2=m2I in this representation, and setting Pμ=(m,0,0,0)T in 
the rest frame, we have the following set of identities from equation (1) 
taking A=1, 2 and 1,2B =   ;

{ }
{ }
{ } { }

0
1 1 11 11

0
2 2 22 12

,

, 0

, , 0A B BA

Q Q P m m

Q Q P m

Q Q Q Q

m
m

m
m

s s

s s

= = =

= =

= =

  

  

 

.

From these properties we see that the 2-spinors form at least a 
Clifford algebra in this factorial representation, and we see also that 
QA

2=0 and this is in fact a Grassmann algebra.

If | p, λ> is an eigenstate in the Hilbert space H, then Pμ| p, 
λ>=pμ|p,λ>.

The corresponding (pure) vector state is invariant under the 
translational group since we have

0=|PμQA|p,λ>=QAPμ|p,λ>=QAPμ | p,λ>=PμQA|p,λ

We can thus always choose a minimum energy pure vector state ω|p,λ> 
which is translation invariant and with ω||p,λ>(QA)=<p,λ|QA|p,λ>=0. It 
is specified by its mass-energy p and its spin value λ. Thus ω|p,λ> is a 
translation invariant ergodic pure state.

If we now, exploiting local special relativistic covariance, choose an 
inertial reference frame in which the Wigner little group contains the 
spin generating 2x2 rotation matrices in the x-y plane, we have;

Pμ=(E,0,0,E) therefore;

{ }
( )0 2 2 0 3

0 2 3

, , , ,

1 1

1 0 1 0 0 0
0 1 0 1 0 2

A B AB AB

AB

Q Q p P p p p

Now p p p p p E

E
E

m m
m m

m
m

l s l s l

s s s s s s s

>= >=

= - - - = -

æ öæ ö æ ö æ ö÷ç ÷ ÷ ÷ç ç ç÷÷ ÷ ÷= - =çç ç ç÷÷ ÷ ÷çç ç ç÷÷ ÷ ÷ç ç ç÷ç -è ø è ø è øè ø

  

 .

Hence applying this to our translation invariant vacuum state, 
ω|p,2> we have;

1 11 1,2 ,2 ,2 ,2 0p Q Q p p Q Q p< >=-< >=
 

.

Similarly, considering the 21  element of the matrix, we have

2 21 1,2 ,2 ,2 ,2 0p Q Q p p Q Q p< >=-< >=
 

.

Thus ( )1 2 1 ,2 0aQ bQ Q p+ >=


 for any scalar a and b.

Since Q1and Q2 span the subspace L1, it follow that 1 ,2 0Q p >=


.

We conclude that the translation invariant pure Boson state ω|p,2> 
is the local Clifford vacuum, and a spin 2 pure state corresponding to 
the graviton. It is an extreme point of the closed convex hull of the state 
space and is thus an extreme point of the translation invariant states: it 
is an ergodic gravity state. Its Super symmetric fermion partner is the 

Gravitino with spin 3
2

.

Quantum States Invariant under the Action of Compact 
Lie Groups

The weak topology σ(A(x)*,A(x)) can be defined on the predual 
A(x)* as the coarsest topology for which elements of the predual are 
continuous [10]. It is defined by a set of semi-norms p=|f | for f a 
density matrix linear functional which as a set are separating for A(x)*. 
Making minimal assumptions we let α: g → αg be a weakly measurable 
representation of the compact Lie group G as automorphisms of A(x). 
By this we mean that the induced mapping2 ( )1: :gv g f G A xa-® ®  is 
measurable for Haar measure on G and the σ(A(x)*,A(x)) topology on 
A(x)* Since every positive element of A(x)* is a countable sum of vector 
states this is equivalent to the definition that ( ): :x gv g G A xw a

*
® ®  

is measurable for all x in the fibre Hilbert space F(x).

Given that the induced mapping ( ): :gv g f G A xa
*

® ®  is 
measurable in the sense now defined above we have previously [11];

( ) ( ) ( ) ( ) ( ) ( ) 0v g f A v h f A v g f v h f A as g h- £ - ® ®   

.

This demonstrates the following result, which allows the extension 
of continuous gauge automorphic representations of compact Lie 
groups to their cross-product such as the Standard Model gauge group 
SU(3) × SU(2) × S(1);

For the induced representation ( ): :gv g f G A xa
*

® ®  on the 
predual of A(x), weak measurability is equivalent to weak continuity.

We have shown, as for local diffeomorphism-invariant quantum 
states [3,7], that quantum states invariant under the action now of 
compact Lie groups are common in the sense that the weakly closed 
convex hull of every normal state contains such a state. We are now 
dealing with groups such as SU(n) which are both compact and non-
abelian thus different techniques are required. To achieve this result, 
we developed a new idea based on group stabilizer theory which we 
called Wigner sets [12]. These are complementary to little groups.

Wigner sets and the finite intersection property

Given a density matrix quantum state f, and a weakly 
measurable representation g → αg of a compact Lie group G as gauge 
automorphisms of the fibre algebra A(x); define the closed convex hull; 

( ) { };gX f co f g Ga= Î  with closure in the σ(A(x)*,A(x))-topology.

Define the group of isometric and σ(A(x)*,A(x))-
continuous transformations mapping X(f) → X(f) by 
( ) ( ) ( ){ }: ; ,gv G v g x x g G x X fa= ® Î Î

.

Mathematically, we note that since G is compact and 
( ):f G A xa ® * is weakly measurable and thus weakly continuous; this 

implies that ( )f Ga  is σ(A(x)*,A(x))-compact. The Krein-Smulian 
theorem [13], then shows that X(f) is also a σ(A(x)*,A(x))-compact 
set. Thus X(f) is a non-void σ(A(x)*,A(x))-compact convex subset of 
the locally convex Hausdorff linear topological space of ultraweakly 
continuous linear functionals acting on the fibre algebra A(x).

The group of mappings ( ) ( ) ( ){ }: ; ,gv G v g x x g G x X fa= ® Î Î  
is a non-contracting (semi)-group of weakly continuous affine maps 
of X(f) onto itself. We can therefore, apply the Ryll Nardzewski fixed 
point theorem [14] to establish the existence of an invariant normal 
state contained in X(f). The physical implications highlight the role of 
what we have termed Wigner sets.

Given, define the Wigner set of the mapping v(g):X(f) → X(f) as the 
stabiliser set; ( )( ) ( ) ( ){ }:v g x X f v g x x= Î = .
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More generally, given a finite subset {g(j)∈G;j=,2,…n} and 
corresponding mappings {v(g(j));j=,2….n}, we can construct the affine 

mapping: ( )( ) ( ) ( )1 :
j

v g j X f X f
n

æ ö÷ç ÷ç ®÷ç ÷÷çè ø
å .

We then define ( )( ){ } ( )( )1; 2,..
j

v g j j n v g j
n

æ öæ ö÷ç ÷ç ÷÷ç ç= ÷÷ç ç ÷÷÷ç ç ÷ç è øè ø
å  .

We proved [12] that the following relationship between Wigner 
sets applies;

( )( )( ) ( )( )1
j j

v g j v g j
n

æ öæ ö÷ç ÷ç ÷÷ç ç= ÷÷ç ç ÷÷÷ç ç ÷ç è øè ø
å  .

Invariant normal states

It is now easy to see why, physically, by exploiting the 
properties of Wigner sets, X(f) contains a fixed point for the 
group of isometric and σ(A(x)*,A(x))-continuous transformations 
( ) ( )( ) ( ){ }; ,gv G v g x x g G x X fa= ® Î Î

.

We have that ( )( )1
j

v g j
n

æ öæ ö÷ç ÷ç ÷÷ç ç ÷÷ç ç ÷÷ç ÷ç ÷ç è øè ø
å  is a σ(A(x)*,A(x))-continuous 

affine mapping on the compact convex set X(f) It thus has a fixed 
point x (applying again Schauder’s fixed point theorem). Then 

( )( )1
j

x v g j
n

æ öæ ö÷ç ÷ç ÷÷ç çÎ ÷÷ç ç ÷÷ç ÷ç ÷ç è øè ø
å .

The expression;

( )( )( ) ( )( )1
j j

v g j v g j
n

æ öæ ö÷ç ÷ç ÷÷ç ç= ÷÷ç ç ÷÷÷ç ç ÷ç è øè ø
å 

shows that the Wigner sets  (v(g)) have the finite intersection 

property since ( )( )( )
j

v g j  is non-void. Clearly each Wigner 

set is a (σ(A(x)*,A(x)))closed subset of the compact set X(f) thus 

( )( )( )
g

v g j ¹Æ .

If ( )( ) g g
g

h v g h v h h g GaÎ Þ = = " Î   . Thus, h is the 

required invariant quantum state.

The proof shows that quantum states invariant under the action of 
compact Lie groups are common in the sense that the weakly closed 
convex hull of every normal state contains such an invariant state.

Discussion
We have developed a set of mathematically consistent non 

perturbative methods applicable to Loop Quantum Gravity, addressing 
a number of issues raised by Ashtekar [15]. These methods have 
been applied to show that quantum states invariant under either an 
external group of local diffeomorphisms of space-time or quantum 
states invariant under the internal action of a compact Lie group are 
‘common’, in the sense that the weakly closed convex hull of every 
relevant quantum state contains such an invariant state. These form 
the building blocks of invariant fields and Lagrangians. A form of N=1 
Supersymmetry and non-commutative space – time naturally emerges, 
which predicts a spin-2 massless graviton and its companion gravitino. 
Separately, [16] these methods are used to develop a quantum ergodic 
theory.
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