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Introduction
The graphical depiction of the heart beats in the form of electrical 

signals is known as electrocardiogram (ECG). The abnormal rhythms 
of the heart beats are termed as cardiac arrhythmias. Some arrhythmias 
are life threatening. Therefore there is need to identify the heart 
conditions of cardiac patients. The identification of cardiac arrhythmias 
in early stage can save the patients from sudden cardiac arrest. 

A variation in the consecutive cardiac beats is referred to as heart 
rate variability (HRV). By means of HRV analysis technique cardiac 
health can usually be computed. An estimation of HRV is recently being 
adopted as investigation tool for recognition of heart abnormalities in 
cardiology. 

Some methods have been suggested in reported literature for 
recognition, classification or prediction of cardiac arrhythmia. Özbay 
and Karlik presented Artificial Neural Network (ANN) and built up 
ECGWin Software to interpret and classify more number of cardiac 
arrhythmias [1]. Habboush et al. compared neural networks with 
Karhunen-LoGve transform for compression and classification [2]. 
Saini and Saini used multilayer perceptron (MLP) feedforward neural 
network to classify four arrhythmias [3]. Franklin and Wallcave utilized 
ANN to categorize heartbeat into 6 types with 85% correct identification 
rate [4].

Deshmukh and Patil proposed Empirical Mode Decomposition 
and feed-forward propagation neural network to classify different 
types of Abnormal beats [5]. Ozbay et al. studied MLP and fuzzy 
clustering Neural Network for classification of 10 different arrhythmias 
[6]. Wang et al. suggested methods to distinguish eight types of ECG 
using principal component analysis (PCA), linear discriminant analysis 
(LDA) and a probabilistic neural network (PNN) [7]. The generalized 
linear model (GLM) algorithm to discriminate arrhythmias classes 
using AR coefficients of normal and abnormal ECG signals [8,9].

These techniques are generally based on extraction of 
morphological and temporal features from processing of ECG signals. 
The main disadvantages of ECG signal processing for features detection 

are 1) requirement of large computation time and 2) Introduction of 
noise in the ECG at the time of processing. An alternative approach 
is to extract HRV signals from RR time intervals of ECG signal. The 
main advantages of HRV analysis for features detection include 1) RR 
time intervals are less prone to the noise and 2) HRV signals signify 
the function of autonomic nervous system (ANS) and cardiovascular 
system [10].

HRV signal is useful tool for estimation of overall cardiac health 
and condition of the ANS. Therefore, HRV analysis can be treated as 
valuable investigation tool in detection, prediction of arrhythmias 
classes in the medical field of cardiology [11].

Some of proposed approaches for analyzing the HRV signal in 
detection and prediction of cardiac arrhythmia classes are reported in 
the given literature. 

Yaghouby et al. investigated four cardiac arrhythmias such as 
left bundle branch block, first degree heart block, Supraventricular 
tachyarrhythmia and ventricular trigeminy based on the Generalized 
Discriminant Analysis (GDA)feature reduction technique and MLP 
[10]. Acharya et al. proposed ANN and Fuzzy equivalence relationship 
for classification of eight types of cardiac arrhythmias [12]. Anuradha 
and Reddy employed non-linear methods such as Spectral entropy, 
Poincaré plot geometry, Largest Lyapunov exponent and detrended 
fluctuation analysis to extract features from HRV signal for fuzzy 
classifier [13]. Asl et al. studied four types of cardiac arrhythmias for 
adaptive-learning-rate neural network classifier adopting linear, 
nonlinear, and chaotic features of the RR interval signals [14]. Dallali 
et al. presented combined approach using fuzzy c-means (FCM) 
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Abstract
The study of Heart rate variability is recently gained momentum for an estimation of heart health. This paper 

suggests a new approach for enhancement of the prediction accuracy of Multi-Layer Perceptrons (MLP) neural 
network using improved Particle Swarm Optimization (IPSO) technique. The IPSO computes the weights and biases 
of MLP for the more accurate prediction of the cardiac arrhythmia classes. This study for heart condition prediction 
involves selection of Three types of heart signals including Left Bundle Branch Block (LBBB), Normal Sinus Rhythm 
(NSR), Right Bundle Branch Block (RBBB) from MIT-BIH arrhythmia database, formation of heart rate time series, 
extraction of features from RR interval time series, implementation of training algorithm and prediction of arrhythmia 
classes. Several experiments on the proposed training method are carried out to superior the convergence ability 
of MLP. The experimental results gives comparably better evaluation over gradient based Back-Propagation (BP) 
learning algorithm.
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by doing some sort of parameter adaptation during learning. Singhal 
and Wu illustrated the application of extended Kalman algorithm 
which converged quickly compared to BP algorithm but required more 
computation [23]. Sarkalehm and Shahbahrami suggested several 
training algorithms such as Gradient Decent algorithm (GDA) with 
adaptive Learning Rate, Resilient and Levenberg-Marquardt algorithms 
for MLP to classify Paced Beat (PB), Atrial Premature Beat (APB) and 
NSR [24]. Suykens and Vandewalle determined output weights of single 
hidden layer MLP classifier using SVM method [25]. 

Tzikas and Likas effectively utilized incremental Bayesian learning 
method for linear models to train the MLP [26]. Ni and Song provided 
online learning algorithm for the neural tracking control system [27]. 
Battiti reviewed first and second order optimization methods for feed 
forward neural networks learning [28]. Riedmiller and Braun proposed 
new learning algorithm-Resilient backPropagation (RPROP) for MLP 
to improve generalization error a gradient-descent algorithm [29].

Moller introduced new supervised learning algorithm, scaled 
conjugate gradient (SCG) to speed-up convergence rate than BP, 
conjugate gradient algorithm with line search (CGL), Broyden-fletcher-
Goldfarb-Shanno (BFGS) memory less quasi-Newton algorithm [30]. 
Nasir et al. demonstrated ability of Bayesian Regulation algorithm and 
LM to train MLP and Simplified Fuzzy ARTMAP (SFAM) for classifying 
the acute leukemia cells in blood sample [31]. Sut and Celik predicted 
mortality in stroke patients using MLP trained with algorithms namely 
quick propagation (QP), LM, BP, quasi-Newton (QN), delta bar delta 
(DBD), and CGD [32]. Abid et al. proposed learning algorithm based 
on combination of Least Square (LS) and Least Fourth (LF) criterion 
[33]. 

In fact the gradient-based training algorithms often require large 
iterations so as to evade from being spellbound in local optima and 
tuning of learning rate. Numerous modifications have been suggested 
to overcome the limitations of the gradient-based algorithm. 

The evolutionary approaches such as Genetic algorithm, Ant Colony 
Optimization, artificial bee colony, Cuckoo search, PSO are usually 
being used in avoiding local minima and improving convergence rate 
of training algorithm [34-40]. 

In latest years, swarm intelligence algorithm such as PSO has been 
applied to solve real life problems in the area of optimization [40]. 

Particle swarm optimization

The PSO algorithm replicates social intelligence of particle swarm 

clustering, wavelet transform and PCA to classify four kinds of heart 
diseases [15]. Asl and Setarehdan proposed automatic detection and 
classification method using ANN classifier for five classes of arrhythmia 
[16]. 

Kelwade and Salankar predicted classes of cardiac arrhythmia 
with MLP and radial basis function Neural (RBFN) network [17,18]. 
Goshvarpour focused on the Lyapunov Exponents and Entropy features 
to train Quadratic classifier and compare the result with Fisher and 
k-Nearest Neighbor (k-NN) classifiers [19]. Kampouraki et al. used 
statistical methods and signal analysis techniques to extract features 
of heartbeat time series [20]. Rawther and Cheriyan investigated 
support vector machine (SVM) for Life threatening arrhythmias such 
as Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF) to 
detect and classify by make use of temporal and wavelet features [21]. 
Asl et al. developed an effective algorithm based on GDA and SVM 
classifier using HRV [22]. 

This paper for prediction of arrhythmia classes is organized in 
remaining sections as follows. Materials and methods section presents 
the overall methods such as MLP and PSO. Followed by experimental 
results and discussions of the proposed algorithm. Finally, the paper 
ends with significant remarks in conclusion section. 

Materials and Methods
The ECG records for analysis and prediction are captured from 

standard MIT-BIH arrhythmia database. The filtering of ECG signals 
is performed with bandpass filter to remove powerline interferences. 
Pan and Tompkins algorithm for detection of QRS complexes and then 
R peaks is utilized in this study. Three kinds of heart rhythms including 
LBBB, NSR and RBBB are selected. The Records 109, 233 and 118 of 
ECG signals possessing LBBB, NSR and RBBB rhythms are particularly 
selected. The RR interval time series (RRITS) signals from the records 
to estimate the HRV is detected. The segments of the RRITS signals to 
extract the features are formed. The features such as normalized Low 
Frequency (nLF) and High Frequency (nHF) power components, SD1/
SD2 ratio, Spectral Entropy (SE), Largest Lyapunov Exponent (LLE) 
and Hurst exponent (HE) extracted from HRV signal using linear and 
nonlinear methods are presented to train MLP for better prediction 
accuracy [12,13,16-18]. 

Training of multi-layer perceptrons 

The MLP is a most popular multilayer feed-forward neural network. 
The adopted neurons configuration, shown in Figure 1, includes 6 
neurons, 10 neurons and 3 neurons in input, hidden and output layers, 
respectively. 

For prediction problems, The MLP is generally trained with a Back 
Propagation (BP) learning algorithm by computing the connection 
weights and biases. The BP learning algorithm, which is largely depends 
on selection of initial values of weights for faster convergence and a 
minimum generalization error, is an extension of the Least Mean 
Square (LMS) rule. 

Many training algorithms have been reported in the literature to 
optimize the generalization errors and convergence speed of the MLP. 
Recently, extensive research and significant progress have been made 
in the area of nonlinear system. However, when a neural system is used 
to handle unlimited examples, including training and testing data, an 
important issue is how well it generalizes to patterns of the testing data, 
which is known as generalization ability. Many algorithms have been 
proposed so far to deal with the problem of appropriate weight-update 
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Figure 1: The MLP structure with 6:10:3 neurons configuration.
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namely flock of birds and school of fishes. PSO is most popular among 
other evolutionary algorithms because of ease of implementation 
and requirement of tuning of few parameters. PSO has recently been 
employed in the field of an optimization problem such as training of 
neural network [41].

In many literatures, the PSO has been proposed as an effective tool 
for training neural networks [42]. The basic PSO often get trapped in 
local optima and resulted in poor convergence. To efficiently control 
the local search and convergence to the global optimum solution, time 
varying acceleration coefficients (TVAC) are introduced in addition 
to the time varying inertia weight factor in PSO to estimate the new 
velocity of each particle and particles are reinitialized whenever they 
are stagnated in the search space [43].

The particle of the PSO possesses two characteristics namely 
position and velocity. A solution of any optimization problem contains 
updating of personal position and velocity in response with cognitive 
and social experience [40]. 

At current iteration time (t), current velocity vij and new position хij 
are modified using equation (1) and equation (2) respectively.

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21ij ij ij ij gj ijv t w t v t c r p t x t c r p t x t+ = + − + −           (1)

( ) ( ) ( )1 1ij ij ijx t v t x t+ = + +                                                                            (2)

Where w(t), c1 and c2, r1 and r2, pij(t) and pgj(t), хij(t) represent inertia 
weight, cognitive and social acceleration coefficients, random variables, 
personal best position, global best position and previous personal best 
position respectively. 	

The inertia weight may be randomly chosen. In improved PSO, 
inertia weight can be computed using time linear decreasing method. 
Equation (3) gives inertia weight as follows [44]:

( ) max min
max

w w
w t w * t

T
−

= −                                                           (3)

Where Wmax, Wmin T and t represent maximum and minimum value 

of inertia weights, maximum iteration and current iteration respectively.

The performance of PSO is dependent to the proper tuned 
parameters that results in the optimum solutions. Normally, cognitive 
(c1) and social acceleration coefficients (c2) are randomly selected to 
constant values. If value of c2 is selected higher than value of c1, the PSO 
will converge prematurely [45].

Initially choosing high c2 and small c1 will make particles to move 
towards optimum solution. As optimization progresses, the values 
of c1 and c2 will get modified, which direct the particles to the global 
solution [45]. The acceleration coefficients are determined according 
the following equations (4) and (5) [46].

( ) ( )1 1 1 1
' '' ''

max

ic t c c * c
i

= − +                                                                      (4)

( ) ( )2 2 2 2
' '' ''

max

ic t c c * c
i

= − +                                                               (5)

Where c1 and c1, c2 and c2 are minimum and maximum values 
of cognitive coefficients, minimum and maximum values of social 
coefficients respectively.

In the simulation, the parameters of PSO algorithm are set initially 
as shown in Table 1.

Each particle possesses fitness value and fitness of the particle is 
measured by a fitness function. In this approach, mean squared error 
is used as the fitness function to test the performance of individual 
particle.

The fitness of kth particle at tth iteration is assessed using equation 
(6).

wmin wmax ć1 ć2 2
''c

2
''c

No. of 
particles

Maximum 
iteration

0.8 2 0.8 0.8 3.5 3.5 50 50

Table 1: Parameters setting of IPSO.
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Figure 2: The performance of MLP-PSO.
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Where P, On and On denote number of training datasets, desired 
output and actual network output, respectively. 

A personal best position pbestk and a global best position gbestk of 
kth particle will be adapted in tth iteration using equation (6).

( ) ( ) ( ) ( )
( ) ( ) ( )

1
1

k k k
k

k k k

p t    f t f t
pbest t

pbest t    f t f t
 ≤ −  =  > −  

                                                    (7)

( ) ( ){ } 1

k
k k k

gbest t best pbest t
=

=                                                    (8)

Results and Discussion
In this study, our aim was to train the MLP using the IPSO to 

enhance the performance of MLP to predict the classes of cardiac 
arrhythmia. The experiments are carried out on arrhythmia data 
segments to make the MLP to effectively evolve the weights and 
biases with the help of IPSO. The experimental result of IPSO is 
compared with standard gradient based learning algorithms namely 
gradient decent algorithm with adaptive learning rate (GDX), 
RPROP, SCG and one-step secant method (OSS). Figures depict the 
training and Prediction results in confusion matrices. The Training 
performance of IPSO, GDX, RPROP, SCG, OSS learning algorithm 
is measured by plotting MSE against iterations. The plotted result is 
shown in figures. The IPSO enables the MLP to dynamically evolve 
weights and biases effectively. The performance of IPSO algorithm is 
found to be quite competitive in comparison with other algorithms 
(Figures 2-11).
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Figure 3: Training result of PSO.
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Figure 4: Training and prediction result using gradient decent with adaptive learning rate.
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Figure 5: Experimental training results using gradient decent with adaptive learning rate.

1 2 3

1

2

3

96
29.4%

0
0.0%

12
3.7%

88.9%
11.1%

0
0.0%

123
37.6%

1
0.3%

99.2%
0.8%

1
0.3%

0
0.0%

94
28.7%

98.9%
1.1%

99.0%
1.0%

100%
0.0%

87.9%
12.1%

95.7%
4.3%

Target Classes

O
ut

pu
t C

la
ss

es

Training with oss method

1 2 3

1

2

3

40
28.8%

0
0.0%

6
4.3%

87.0%
13.0%

0
0.0%

53
38.1%

0
0.0%

100%
0.0%

7
5.0%

0
0.0%

33
23.7%

82.5%
17.5%

85.1%
14.9%

100%
0.0%

84.6%
15.4%

90.6%
9.4%

Target Classes

O
ut

pu
t C

la
ss

es

Prediction Result

Figure 6: The performance of MLP with OSS training method and prediction of arrhythmia classes.
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Figure 7: Training performance using OSS method. 
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Figure 8: Training by SCG method and prediction of classes.
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Figure 10: Training with RPROP method and prediction result.
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Figure 9: Training with SCG method.
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Conclusion
The several experiments are carried out on datasets of three classes 

of cardiac arrhythmia. The learning of MLP is performed using IPSO, 
GDX, RPROP, SCG, OSS learning algorithm. The experimental results 
are compared with the existing learning algorithms and it shows that 
evolutionary method such as IPSO outperform GDX, RPROP, SCG, 
OSS learning algorithm. The IPSO makes MLP to converge faster in 
very little iterations as compared with other training methods The 
IPSO is proved to be used as another alternative learning algorithm 
for enhancing the ability of MLP to predict the arrhythmia classes. The 
presented technique increases the prediction capability of MLP using 
few linear and nonlinear parameters, which are obtained from datasets 
of normal and abnormal HRV signals. The condition of heart health 
can be assessed using the proposed hybrid approach.
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Figure 11: Training with RPROP method.
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