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Abstract
Transcriptomic profiling analyses are frequently used for the study

of cells in response to environmental stress factors that often impede
cell optimal growth. Given that transcriptional profiles of optimally
growing cells differ significantly from those of sub-optimally growing
cells, stress-induced differentially-transcribed genes are thus inevitably
mixed with slow growth genes. It is therefore necessary to separate the
stress-specific response genes from slow growth genes. Methodologies
used to deconvolute stress-specific response from non-specific
response such as slow growth are discussed in this editorial.
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Introduction
Transcription regulation is one of the major ways to control gene

activity in cells. Hence, transcription levels of genes are thought to be
linked largely to the levels of gene activity. Serial Analysis of Gene
Expression (SAGE) was the technology that for the first time allows the
study of a transcriptome or a majority of transcripts in eukaryotic cells
[1]. Instead of sequencing the entire Expressed Sequence Tag (EST)
derived from cDNA libraries [2], the SAGE method takes only a ~15
bps tag from end of each cDNA fragment and ligates to chain multiple
short cDNA tags for PCR amplification and sequencing analysis. By
comparing cDNA tag sequences against EST databases (http://
ncbi.nlm.nih.gov/nucest), a transcriptomic profile can be thus obtained
[1]. Nevertheless, this technique is a bit tedious and expansive, which
limited its wide applications.

Nearly at the same time, DNA microarray technologies, especially
the two-colour DNA microarrays, have been developed for the study of
transcriptomes without involvement of DNA sequencing [3]. In this
case, a DNA microarray is made by spotting cDNA fragments or pre-
synthesized ORF-specific oligomers of 50-80 nucleotides in length on
glass slides or synthesizing oligomers in situ. Fluorescence cyanine Cy3
and Cy5 dyes are coupled with cDNA derived from treated and control
samples (respectively) and co-hybridized with the microarray in a
chamber. Transcription levels of individual ORFs are acquired through
the scanned image of the chip. Due to saturation of hybridization
signal on chip, it is believed that the dynamic range of transcription
levels in a transcriptome is underestimated by hybridization-based
methodologies when compared to DNA sequencing-based
technologies. Regardless of this concern, DNA microarray
technologies are still widely used in studies including but not limited to
transcriptomes due to its affordability and easy handling.

Nowadays, high-throughput sequencing technologies that are also
known as Next-Generation Sequencing (NGS) technologies are getting

more and more popular for transcriptomic studies in organism with or
without complete genome sequences. Next-generation sequencing
such as HiSeq2500 platform is based on sequencing by synthesis
method (http://www.illumina.com) that runs 300 million to 2 billion
sequence reads of 50-500 bps in length simultaneously. Assembly of
massive short sequence reads requires information of complete
genome sequences. However, development of the de Bruijn graph-
based sequence-alignment algorithms has permitted transcriptome
assembly without reference genome or de novo [4]. Both microarray
and NGS methods are frequently applied for the study of genome-wide
transcriptional profiling of cells in response to various stress factors,
besides others.

Common Environmental Stress Response Genes
Transcriptomic profiling analysis of cells in response to various

environmental stress factors is thought to be a convenient way to
annotate biological function of many novel genes discovered through
genome sequencing projects. Early genome-wide transcriptional
profiling studies have found that majority of the stress response genes
in yeast are common to all tested environmental stress factors such as
heat shock, osmotic shock, oxidative stress, and nutrient depletion and
so on [5,6]. It is therefore that these genes are designated as
Environmental Stress Response (ESR) genes [5] or Common
Environmental Response (CER) genes [5]. Approx. 10% of the yeast
genome are found to be ESR or CSR genes [5,6]. It is assumed that
stress responsive genes are required for growth fitness under the
respective stress condition. However, functional analysis of a large set
of barcoded deletion strains in yeast indicated that CSR genes have
shown no correlation with requirement of growth fitness under the
respective stress conditions. It is thus puzzling why cells alter
transcription levels of ESR or CSR genes upon treatment with various
stress factors.

Slow Growth Genes
However, it is difficult to distinguish between the primary effects

caused by the addition of stress factors and the secondary effects
arising from growth inhibition. Analysis using chemostat cultures of
wild type and mcm1 in yeast showed that most of the differentially
transcribed genes in mcm1 are a result of slow growth, because they
are not differentially transcribed after cells adjusting growth rate [7].
Careful analysis of transcriptomic profiles of yeast cells under various
nutrients has revealed the distinct transcriptomic profiles of cells under
different growth rates. The results reveal that majority (80%) of ESR or
CSR genes are growth-rate related genes or slow growth genes [8]. This
is further supported by the study showing connections among growth
rate, metabolism, stress, and the cell cycle [9]. It is inevitable that
addition of stress factors reduces the growth rate of cells. Hence,
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identification of the primary effects by stress factors requires
deconvolution of transcriptional changes caused by growth inhibition,
the secondary effects by stress factors.

Deconvolution of Stress Response from Slow Growth
In fission yeast, transcription factor Atf1p is known to be a key

regulator involved in oxidative stress response [10]. Analyses show that
some but not all oxidative stress induced genes whose promoter is
bound by Atf1p [11]. Phenotypic assessment of Atf1p-bound genes
regardless of differential transcription in response to oxidative stress
indicates a tight association between Atf1p-bound genes and
requirement for growth fitness under oxidative stress. On the other
hand, Atf1p-unbound oxidative response genes appear to be unrelated
to growth fitness [11]. Based on genes that are controlled by the major
regulator for oxidative stress response in fission yeast, it is possible to
deconvolute between primary and secondary effects on differentially
transcribe genes. However, this approach is unsuitable for studies in
organisms whose major regulators involved in stress responses are
unknown.

Dunaliella has an ability to survive under the wide ranges of salinity
with the optimal growth from 0.5 M NaCl to 2 M NaCl [12,13]. Hence,
it becomes a popular model for study of cellular adaptation to salinity
changes [14]. To explore transcriptional changes upon salinity changes
in Dunaliella, Kim et al. [15] discovered 112 differentially transcribed
genes upon salinity increase from 1.5 M NaCl to 4.5 M NaCl and 85
differentially transcribed genes upon salinity decrease from 1.5 M
NaCl to 0.08 M NaCl. It was found that 58 differentially transcribed
genes were common to both salinity increase and decrease. However,
none of them shows inversely correlated transcriptional changes upon
salinity increase and decrease, suggested that the slow growth genes
dominated when cell exposure to extreme salinities. Indeed, all 58
common genes are found to be both up-regulated or both down-
regulated upon salinity increase and decrease.

Transcription profiling analysis of Dunaliella in response to
reciprocal salinity changes within the optimal growth conditions
between 0.5 M to 2 M NaCl, Fang et al. [16] showed that majority (100
out of 130) of the differentially transcribed common genes appeared to
be inversely correlated in response to salinity increase and decrease,
suggesting the salinity-specific responses. Analysis of transcriptional
level changes of enzymes involved in glycerol and its potential carbon
sources metabolisms permit predicting metabolic flux of Dunaliella
cells in response to salinity changes.

Conclusion
Transcriptomic profiling analysis is a useful method to study

cellular response to treatment of environmental stress factors.
However, deconvolution of the primary effects caused by stress factors
from the secondary effects resulting from slow growth is essential.
Profiling analysis of cells in response to reciprocal alterations of stress
and stress-free conditions can facilitate identification of inversely-
correlated differentially-transcribed common genes, the bonafide stress
factor-specific response genes.
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