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Introduction
Physical activity has been widely associated with higher life quality, 

considering the effects in mental, social and health parameters [1]. 
Apart from the evident benefits for the cardiovascular and endocrine 
system [2], nowadays some studies sought to investigate the molecular 
alterations produced by chronic and moderate physical activity that 
also improve brain function. Memory processes are modulated by 
emotions, hormones and neurotransmitters. The cholinergic system 
is implicated in long-term potentiation (LTP) and is being related to 
memory formation in several brain areas [3,4]. There is evidence for 
the involvement of the alpha7 nicotinic acetylcoline receptor (nAChR) 
in hippocampal activity [5], memory reconsolidation [6] and sustained 
attention [7-9]. In humans, several studies have shown that physical 
exercise can modulate cognitive functions, and act as a potential non-
pharmacological treatment for patients who have cognitive disorders, 
such as Alzheimer’s disease, although the molecular mechanisms for 
such benefits are not clear [10]. Also, many studies in animal models 
have demonstrated beneficial effects of physical activity in cognitive 
processes using distinct exercise protocols, such as voluntary wheel 
running [11] and treadmill running [12]. In addition, it is well known 
that physical exercise increase the density of neurotrophins like the 
brain-derived neurotrophic factor (BDNF), which are involved in 
neuroplasticity and that this neurotrophin can stabilize the expression 
of α7 nicotinic receptors in the hippocampus and in parasympathetic 
neurons [13,14]. Regular physical activity with submaximal intensity 
can also upregulate the expression of proteins that are involved in 
cellular antioxidant mechanisms, as peroxiredoxins that work as 
scavengers for hydrogen peroxides [15]. Moreover, lower oxidative 
damage and increase in antioxidant enzymes were also described in 
both humans and rats that undergo chronic regular physical activity 
[16,17]. Concerning this scenario, our hypothesis is that in animals 
that have difficulties to learn and memorize a task, moderate physical 
exercise may improve the cholinergic system function, increasing the 

density of the α7 nicotinic cholinergic receptor in brain areas that are 
important for memory processing, contributing to the improvement 
in the cognitive performance. Therefore, this work verified the effects 
of a chronic moderate physical exercise protocol in treadmill running 
in the memory evocation in lower cognitive performance rats and also 
investigated the α7 nAChRs density and the oxidative balance in brain 
regions related with memory.

Materials and Methods
Animals

Male Wistar rats, from our own breeding colony, 3 to 4 months old, 
weighting 300-470 g, were housed within controlled room temperature 
(22-24°C) and humidity (55-65%) in a 12:12 h light/dark inverted 
cycle (lights on at 6 pm). Food and water were supplied ad libitum. All 
experimental procedures were performed according to the Guide for 
the Care and Use of Laboratory Animals (National Institute of Health 
publication 86-23, Bethesda, MD) and were approved by The Ethics 
Committee on Experimental Research from Santa Casa de Sao Paulo 
School of Medical Sciences. All efforts were made to minimize the 
number of animals used and their suffering.
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Chronic and moderate exercise promotes biochemical and physiological changes in the organism, leading to, among other 
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presented significant reduction on the blood pressure, when compared to their sedentary controls and an improve of 2.95 times 
in memory. After that, brains were extracted and submitted to autoradiography for α7 nAChR using [125I]-α-bungarotoxin. It was 
observed a significant increase in the density of this receptor in the hippocampus and in the shell portion of nucleus accumbens 
of trained animals when compared to sedentary ones. In conclusion, moderate physical exercise improved memory evocation of 
less-responsive animals and increased the density of α7 nAChR. These data reinforce the importance of the moderate exercise to 
those who present learning and memory difficulties.
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Behavioral protocol

Rats were submitted to two-way active avoidance shuttle box (40 × 
20 × 22 cm, Ugo Basile, Comerio, Italy) that is divided into two identical 
compartments, which are accessible to each other by a narrow open 
passage in the wall. In order to lower the level of contextual freezing, 
a training session was performed in which the animal was placed in 
the shuttle box and remained there for 5 min without any stimulus. 
After this period, the animal was exposed to 50 trials of avoidance 
conditioning (acquisition test). Each trial consisted of 2 s conditioned 
stimulus (CS), i.e., a buzzer (70 dB, 760 Hz) and light (40 W), followed 
by 4 s unconditioned stimulus (UCS), a mild foot shock of 0.7 mA 
delivered through the grid floor. Each trial was separated by fixed intertrial 
intervals (20 s). During the sessions the number of conditioned avoidance 
responses (CAR) were recorded, i.e., when the rat crossed into the other 
compartment before the UCS [9]. One week later, the same experimental 
protocol was conducted (test 1) and, another one, immediately after the 11 
weeks treadmill exercise protocol (test 2).

Groups

Within one week interval between the acquisition session and 
the Test 1, approximately half part of the animals show the capacity 
to remember the task, as the animals have clear learning variability in 
memory performances in this task. Currently, animals that reach 30-
70% of CAR are selected to the following proceedings, as shown earlier 
by our group [9,18]. In the present work, the CAR in the acquisition 
session and in the Test 1 were compared and thus, a subtraction between 
test 1 and acquisition test was performed (delta values). A distribution 
frequency was calculated and, according to this, animals with delta 
values above 8 (median value) were considered “responsive”, whereas 
those ones with values below 8 were considered “less responsive”. After 
that, they were submitted to the treadmill exercise training.

Exercise protocols

Adaptation to treadmill and maximal exercise test (MET): 
Initially all animals were adapted to the treadmill, walking for 10 min at 
0.3 km/h for four consecutive days to get familiar with the equipment. 
The MET consisted in a progressive increase in speed every 3 minutes 
of 0.3 km/h, starting at 0.3 km/h and progressively up to the maximal 
speed supported by each rat. Three tolerance tests were performed: after 
the adaptation period, in order to determine the protocol of training; at 
the end of 5th week of training, to adapt and adjust the values of speed 
and time; and at the end of the training period, to compare the efficacy 
of the training [19].

Treadmill training program: The training program was performed 
on a treadmill designed for human use (Imbrasport®) and adapted for 
eight rats simultaneously. The protocol was designed considering 50 
to 70% maximal running speed of the MET, therefore consisting in a 
physical exercise with moderate intensity [19,20]. Animals run once 
a day, 5 days per week for 11 week. Sessions were performed between 
8:30 am and 11:30 am (dark phase). The entire training process was 
carried out without using any tail shock.

Measurement of systolic arterial blood pressure

A tail cuff sphygmomanometer (W.A. Baum Co.®, USA) was used 
to measure the systolic arterial pressure. It was performed three times 
during the exercise protocol, and the first measurement was obtained 
before the beginning of treadmill adaptation. The two times left were 
performed one day after each MET [20,21]. Data are presented in mean 
of arterial pressure, as follows:

MAP=DP+1/3(SP-DP) Where MAP is the mean arterial pressure; 
DP is diastolic pressure and SP is systolic pressure.

Time-line of experimental design

Figure 1 shows the time-line for the experimental design of the 
present work.

Autoradiography

The method used was adapted from a previously described 
procedure [9,22]. Briefly, after behavioral observations, animals were 
killed by decapitation and the brains were extracted, immediately 
frozen in dimethylbutane and stored at -80°C until use. Serial sections 
of brains (20 μm) were cut on a cryostat chamber (-20 to -22°C, Microm 
HM 505N, Francheville, France), thaw-mounted on gelatin coated 
slides, desiccated for 5 min at room temperature and kept at -80°C 
until use. For receptor autoradiography, incubations were conducted 
for 90 min at room temperature using 5 nM [125I]-α-bungarotoxin for 
identification of α7 nAChR, an irreversible antagonist of the receptor. 
Specific binding of the toxin for α7 nAChR, in this concentration, 
accounted for 80.2% of the total binding as stated earlier [9]. This was 
measured in saturation curves of [125I]-α-bungarotoxin (1 mg protein 
incubated with 0.1 to 20 nM, at 25°C, for 120 min) that were done by 
our research team previously, using 2 µM unlabeled α-bungarotoxin. 
Observed Kd of these curves were 1.2 ± 0.1 nM (n=3), which were similar 
to those described in the literature (0.91 nM) [23]. Non-specific binding was 
assessed using 2 μM of the unlabelled toxin. The radioligand was diluted 
in 50 mM phosphate buffer containing 1 mM ethylenodiaminotetracetic 
acid and 0.1 mM phenylmethilsulphonyl fluoride, pH 7.4. At the end 
of the incubation period, slides were transferred sequentially through 
4 rinses of 4 min each in 50 mM phosphate buffer at 4°C, and rapidly 
dipped into cold distilled water to remove salt excess. Sections were air 
dried and juxtaposed against Hyperfilm-MP (double-coated, 24 cm×30 
cm, Amersham Biosciences GE Healthcare, Uppsala, Sweden) for 7 days 
(room temperature) along with autoradiographic [125I] microscales (20 μm, 
Amersham Biosciences GE Healthcare). The films were developed in D-19 
Kodak developer and fixed in Kodak Ektaflo solution. The autoradiograms 
were quantified densitometrically using the MCID image analysis system 
(Imaging Research Inc., Ontario, Canada). For each specimen, α7 nAChR 
binding sites were measured on 6-12 sections. The specific binding was 
determined by superposing, and then subtracting the non-specific binding 
(6.82 fmol/mg) from the total binding from similar adjacent sections.

Figure 1: Time-line: Memory protocol – Acquisition session (AS) was the first 
contact of the animals with the active avoidance apparatus. After one week, 
all animals were tested again (T1) and, at the end of the experiment after 11 
weeks, the protocol was repeated (T2). During this period, the physical exercise 
protocol was conducted. To familiarize the animals to the treadmill apparatus, 
all of them were submitted to treadmill adaptation time (TAT), which last for 
four days. After this period, all animals had their mean arterial pressure (MAP) 
measured and they were submitted to maximal exercise test (MET).
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Group formation according to maximal exercise test (MET) 
in the treadmill and physical training effects

Animals were submitted to four days adaptation in the treadmill 
(10 min, 0.3 km/h). After that period, physical performance was 
verified in MET. From the 33 less-responsive animals submitted to 
the initial tests, 18 were considered able to get in the physical training. 
According to the performance in the MET, these animals were divided 
into two groups: sedentary (MET=1.01 ± 0.11 km/h, n=8) and trained 
(MET=1.33 ± 0.10 km/h, n=10).

Animals were submitted to two other METs, one after the 5th and 
the other after the 11th training weeks. Animals from sedentary group 
did not show any improvement in exercise tests. However, a significant 
and progressive increase in MET of trained rats was observed along 
the exercise tests [F(1,51)=92.73, P<0.0001]. MET of trained rats was 
significant higher in 5th week (1.72 times) and in the 11th week (2.04 
folds) of training when compared to MET of sedentary group (1.20 ± 
0.08 km/h and 1.12 ± 0.12 km/h, P<0.0001, respectively) (Figure 3). 
Except for the treadmill training, sedentary animals were manipulated 
similarly to trained animals.

Evaluation of mean arterial pressure (MAP)

Before the treadmill training protocol, MAP of both sedentary 
(91.25 ± 2.25 mmHg) and trained (89.00 ± 1.83 mmHg) animals was 
similar. Physical training promoted a significant reduce of MAP of 
trained animals after 5 weeks (81.33 ± 1.83 mmHg, P<0.01) and 11 
weeks (76.33 ± 1.01 mmHg, P<0.001) of training, when compared to 
the first measurement. There was a statistical interaction [F(1,54)=5.34, 
P<0.001] between MAP of sedentary and trained animals along the 
11 weeks of training, meaning that the effect of physical training on 
blood pressure depended on the total duration of the protocol. In this 
way, trained animals showed a significant difference in MAP, when 
compared to sedentary group (88.75 ± 1.18 mmHg), after the 11th week 
of moderate physical exercise [F(1,54)=18.04, P<0.001] (Figure 4).

Effects of training exercise in memory performance

After 11 weeks of exercise training, animals were submitted once 
again to the active avoidance equipment following the same protocol 
used before the treadmill training protocol. Sedentary animals showed 
a non-significant increase in CAR evaluated in test 2 (16.5 ± 4.4%) 
when compared to test 1 (6.7 ± 1.7%, Figure 4), possibly because of 
the manipulation they were submitted during the same time the other 
group was trained. However, animals that were submitted to physical 
training showed a significant improvement in memory evocation in 

Drugs

[125I]-α-bungarotoxin (143.2 Ci/mmol) was purchased from 
Perkin-Elmer Life Sciences (Boston, MA, USA) and non-labeled 
α-bungarotoxin was purchased from Sigma. All other drugs used were 
of analytical grade.

Statistical analysis

Results were represented as means ± standard-errors and analyzed 
using GraphPad Prism Program (GraphPad Software, San Diego, CA, 
version, 5.0). Differences between CAR in training and test sessions 
were determined using Student-t test. All other data were analyzed 
using two-way ANOVA followed by Bonferroni’s post-hoc test. 
Differences were considered significant when P<0.05.

Results
Group formation according to conditioned avoidance 
responses (CAR)

A total of 61 animals were submitted, initially, to the active 
avoidance apparatus. During the acquisition session in the equipment, 
the percentage of CAR was 5.7 ± 1.1% (n=61) in a total of 50 tasks. 
After one week, the tasks were repeated (test 1) and the same animals 
presented a significant increase of three times in percentage of CAR 
(17.2 ± 2.2%, P<0.0001) (Figure 2A). In order to verify the individual 
performance of each rat, the difference between CAR in test session 
and training session was calculated (delta,  ∆). The median value of Δ 
was 8. According to this, animals were divided into “responsive” (Δ>8) 
and “less-responsive” (Δ ≤ 8) to the task (Figure 2B). Less-responsive 
animals accounted to 33 rats from the total (Figure 2B).

Figure 2: CAR values dispersion of animals (n=61) in acquisition session and 
test 1, in the active avoidance equipment (panel a) and deltas dispersion (panel 
b). Symbols in “A” represent individual values for each animal; in “B”, symbols 
represent deltas from the difference between test 1 and training session. 
Dotted line represents the calculated median of CAR. *: P<0.0001.

Figure 3: Maximal exercise tests (MET) of sedentary (n=8) and trained (n=10) 
rats measured in three different times: before the beginning of physical training, 
after the 5th week and the 11th week of training. Symbols and vertical bars are 
means ± standard-errors of means. *: P<0.001.
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test 2 (14.0 ± 3.5%, P<0.05), when compared to CAR observed in test 1 
(4.7 ± 1.0%) (Figure 5).

Evaluation of α7 nicotinic cholinergic receptor (AChR) 
density in brains of rats after treadmill exercise 

Expression of α7 AChR was verified in many brain areas of 
both sedentary and trained animals, however with no statistical 
differences between both groups. Nevertheless, in the stratum oriens 
of hippocampus, trained animals presented a significant higher density 
of α7 (13.0 ± 1.3 fmols/mg, P<0.001), when compared to sedentary 
samples (5.54 ± 0.9 fmols/mg) (Figures 6, 7A and 7B). In the same way, 
it was observed a rise in density of α7 in the shell portion of Nucleus 
accumbens of trained rats (14.1 ± 2.8 fmols/mg), when compared to 
the same area in sedentary animals (9.5 ± 1.9 fmols/mg) (Figures 6, 7C 
and 7D).

Discussion
In the present study, we demonstrate that moderate physical 

exercise for 11 weeks can reduce arterial pressure of normotensive rats 
and improve the memory of rats that could not answer adequately to 
a task. This behavioral improve is followed by an increase in density of 
cholinergic nicotinic α7 receptors that clearly have a significant role in 
modulation of memory formation. To achieve the desired behavioral 
pattern, rats were divided into those who could answer and those 
who could not answer a task. It was evident that half part of Wistar 
rats submitted to subsequent trials (50 trials) in the active avoidance 
equipment did not make the connection between an unconditional 
stimulus and a conditional one. In this way, this called “less responsive” 
animals could have developed a fear for the context (as in a fear 
conditioning context) or simply could not acquire the information. It 

is well known that learning and memory deficits in humans can appear 
in many phases along the aging process and can affect the developing 
of cognitive skills during the childhood or can bring difficulties in diary 
activities in the elderly. In this way, strategies that are able to modify or 
delay the losses can minimize the negative consequences for each one. 
Physical activity is surely one of these strategies that can be viewed as a 
prophylactic activity for mental health, once it has significant influence 
in essential mechanisms for memory consolidation and retrieve, besides 
offering countless social and psychological benefits [24,25]. Here, this 
non-pharmacological strategy was used as a possibility to improve the 
mnemonic capabilities of rats that could not respond to the task. For 
that, animals were submitted to an inverted cycle (lights on at 6 pm), 
once it is already known that these animals are metabolic active during 
the dark period. In forced protocols, animals make the physical exercises 
in higher intensities with higher energetic requirements. In treadmill 
running, there is the activation of neuroendocrine mechanisms and the 
stress forces the animal to run in a constant velocity, according to the 
protocol configuration, which can have variations in velocity, duration, 
and treadmill inclination.

Moderate exercise improved physical performance

In the present work it was used a chronic and moderate protocol 
once it is considered as a treatment that positively alters the oxidative 
homeostasis of tissues and cells, increasing the resistance to oxidative 
stress [26,27] and bringing benefits to general health. Besides, it was 

Figure 4: Mean arterial pressure (MAP) of sedentary (n=8) and trained rats 
(n=10) in different times along the training protocol. Histograms and vertical 
bars are means ± standard-errors of means. *: P<0.05; **: P<0.01; ***: 
P<0.001; #: P<0.001.

Figure 5: Conditioned avoidance responses (CAR) of less-responsive sedentary 
and trained animals in tests 1 and 2 obtained in the active avoidance equipment. 
Histograms and vertical bars are means ± standard-errors of means. a: P<0.05.

Figure 6: Specific binding of [125I]-α-BUTX to α7 nicotinic cholinergic receptor 
in the pyramidal cells of CA1 area of hippocampus and shell portion of nucleus 
accumbens of less-responsive animals. Histograms and vertical bars are means 
± standard-errors of means. #: P<0.0001.

Figure 7: Photomicrographs of autoradiograms representing anatomical 
distribution of total binding sites for α7 nACh receptor in the stratum oriens of 
hippocampus (A and B), evidenced by arrows, and in the shell of the nucleus 
accumbens (C and D), evidenced by dotted line. Non-specific binding sites are 
represented in E.
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already shown that the intensity-controlled training in a treadmill 
leads to consistent effects of physical training [28]. It was observed 
significant increases in the maximal exercise test as long as significant 
decreases in the mean arterial pressure, showing that after 11 weeks of 
diary exercise training, animals increased their capacity to resist to a 
forced exercise test.

Moderate exercise improved memory of less-responsive rats

In order to verify the benefits of the moderate physical exercise to 
the mnemonic processes, animals were separated according to their 
cognitive skills. The active avoidance apparatus was used as it requires 
the animal’s attention to avoid an aversive stimulus [9]. It leads to 
the secretion of neurotransmitters and hormones as acetylcholine, 
β-endorphin, norepinephrine, glucocorticoids and vasopressin 
with actions in the amygdala. These neuro-humoral alterations 
incorporate to the experiences as components of the fear memory 
[29,30]. According to the rats’ performance in the active avoidance 
equipment, it was possible to separate them into responsive and less 
responsive to the task. Once the rat behavior is related to the animal’s 
response to the environment, the deltas between the training session 
and test 1, performed one week later were calculated and animals were 
distributed in the groups according to the dispersion. Such conduct 
valorizes the individual variability, which could be neglected if a limit 
was imposed. Although a non-significant increase in CAR response 
was also observed in sedentary animals, after the treadmill training 
the less responsive trained animals presented a significant increase 
of 3 times in the response to the active avoidance equipment, when 
compared to their performance before the beginning of the protocol. 
These data support the hypothesis that, even those animals that have 
low capacity of learning and memorize may have their performance 
improved with a moderate routine of exercises. This improve can be 
due to alterations in neurotransmitters, growth proteins or hormones 
levels, that positively affect the central nervous system.

Moderate physical exercise increased α7 nAChR density

A growing body of evidence shows that treadmill exercise 
increases the expression of the neurotrophin brain-derived neurotrofic 
factor (BDNF) leading to improves in cognition [31,32]. BDNF is 
expressed in cortex and hippocampus [33] and can activate multiple 
pathways, depending on its target receptor, leading to changes in 
neurotransmitter systems. As the BDNF expression is modified by 
physical exercise, this mechanism may contribute to changes in 
brain function and improves in memory [34]. The cholinergic system 
is one example of those systems that is under influence of BDNF 
function. BDNF stabilizes newly formed cholinergic synapses of α7 
nicotinic receptors in hippocampus interneurons and parasympathetic 
neurons [13,14,35]. In this way, we showed here that the density of 
α7 nicotinic cholinergic receptors was increased in the stratum oriens 
of hippocampus and Nucleus accumbens after 11 weeks of moderate 
physical exercise. Recently, our research team showed that strategies 
like sustained attention and enriched environment altered the density 
of this receptor in areas related to memory as hippocampus, frontal 
cortex and amygdala [12,22]. This receptor is linked to the formation of 
long-term memory as it can modulate long-term potentiation [36], the 
most accepted biological phenomenon to explain memory formation. 
In the stratum oriens, nAChR are located in inhibitory GABAergic 
interneurons. It has been postulated that this increase in α7 nAChR 
in inhibitory interneurons might be a way to support hippocampus 
homeostasis, inhibiting glutamatergic firing. In this way, a balance 
of excitatory and inhibitory inputs occur leading to “cell assemblies” 

which form a plausible explanation of how groups of neurons behave 
during high activity, including learning and memory formation [37].

Conclusions
In this work, it was shown that moderate physical exercise during 

11 weeks could improve the cognitive capacity of less responsive rats 
to remember a task. Animals also showed decreased blood pressure 
and an increase in physical conditioning evidenced by improve in the 
maximal exercise test. This is the first work that shows that physical 
activity can increase the density of α7 nicotinic receptor in some 
brain areas related to memory. So, it is suggested the involvement of 
the cholinergic system in this improvement. These data reinforce the 
importance of the moderate exercise to those who present learning and 
memory difficulties.
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