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Description
Porphyrias are hereditary disorders caused by the de‐regulation of 

the heme pathway due to a deficiency in some of its enzymes, which 
lead to lower heme formation. This deficiency triggers the induction of 
the regulatory enzyme ALA‐synthase (ALA‐S) [1].

Acute porphyrias are the most dangerous since they are life‐
threatening and can be fatal. They are biochemically characterized by 
the accumulation of heme precursors such as ALA, which generates 
reactive oxygen species (ROS) thus promoting oxidative stress.

Porphyrinogenic drug 2‐allyl‐2‐isopropylacetamide (AIA) 
increases the destruction of liver heme, particularly cytochrome 
P‐450 [2], whereas porphyrinogenic drug 3,5‐diethoxycarbonyl‐1,4‐
dihydrocollidine (DDC) is a potent depletor of hepatic heme due to its 
combined property of destroying heme and inhibiting heme synthesis 
[3]. AIA/DDC treatment results in acute deficiency of heme, marked 
de‐repression of ALA‐S and, consequently, exacerbated production 
of ALA and other heme precursors in the liver [4]. This combined 
treatment has been reported to induce an experimental porphyria 
resembling quite accurately acute variegate porphyria in rats [4]. 
Accumulated ALA has been associated with iron‐mediated oxidative 
damage to biomolecules and cell structures [5] through reactive oxygen 
species (ROS) generation [6]. ROS are able to oxidize nucleic acids, 
proteins, lipids, or carbohydrates, inactivating key cellular functions 
[7]. It has been demonstrated that AIA/DDC treatment promotes an 
oxidative environment with ROS increases [4] (Figure 1).

Glucose administration is known to have beneficial effects on 
acute porphyria patients significantly improving their clinical and 
biochemical condition [1]. In animal models, the prevention of 
acute experimental porphyria through high carbohydrate and/or 
protein intake [8] is an example of the effect of glucose on ALA‐S, 
with carbohydrates preventing the induction of this heme‐ pathway 
regulatory enzyme [9].

On the other hand, it has been reported that AIA/DDC treatment 
promotes gluconeogenic and glycogenolytic blockages leading to 
reduced glucose availability in hepatocytes. In this respect, hepatic 
phosphoenol pyruvate carboxykinase and glycogen phosphorylase 
activities were found impaired in this rat experimental type of 
porphyria [4,10].

The pentose phosphate (PP)‐pathway is primarily an anabolic 
pathway that uses the 6 carbon atoms from glucose to generate 5 
carbon sugars and reducing equivalents. However, this pathway does 
oxidize glucose and, under certain conditions, can completely oxidize 
glucose to CO2 and water. In fact, 30% of glucose oxidation in the liver 
occurs via the pentose pathway. Glucose‐6‐phosphate dehydrogenase 
(G6PD, EC1.1.1.49) is the regulatory enzyme of the (PP)‐pathway; it 
supplies cell riboses for DNA and RNA syntheses [11]. However, its 
main function is the production of NADPH, the major cytoplasmic 
reducing component. It has been shown that G6PD function is 
essential in the defense against oxidative stress‐dependent NADPH 
[12]. The maintenance of the NADPH pool regulates the levels of 
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reduced glutathione (GSH) which, in turn, is in charge of removing 
very harmful compounds such as peroxides from cells. GSH is in fact 
an antioxidant, and prevents damage to important cellular components 
caused by reactive oxygen species such as free radicals and peroxides 
[13]. It reduces disulfide bonds formed within cytoplasmic proteins to 
cysteines by serving as an electron donor. In the process, glutathione is 
converted to oxidized form glutathione disulfide (GSSG). Glutathione 
is found almost exclusively in its reduced form, since glutathione 
reductase (GR) (EC 1.8.1.7), the enzyme that reverts it from its oxidized 
form, is constitutively active and inducible [14], and is thus a critical 
enzyme to maintain proper redox status. GR is a FAD‐containing 
enzyme that catalyzes the NADP‐dependent reduction of GSSG to 
GSH. Other GSH enzymes are glutathione peroxidase (GPx) (EC 
1.11.1.9) and glutathione S‐transferase (EC 2.5.1.18) (GST).

The GPx are a selenium‐containing family of enzymes that use GSH 
to scavenge peroxides in the process of converting GSH to GSSG, thus 
protecting tissues from oxidative damage. GPx1 is the most abundant 
form and is expressed in all cell types whose preferred substrate is 
hydrogen peroxide.

The GST family use GSH in conjugation reactions to bind 
and remove toxic chemicals, and harmful compounds, aiding in 
detoxification and forming less reactive substances. This makes GSTs 
the most important enzymes in chemical defense [15]. GST isoenzymes 
are designated cytosolic, microsomal and mitochondrial transferases 
[16]. GSTs are up‐regulated by xenobiotics, drugs, cytokines, and 
endotoxin [16], and at least 100 chemicals have been identified as GST 
inducers [15]. On the other hand, hematin, bilirubin, biliverdin, biliary 
acids and halogenated compounds, among others, have been found to 
inhibit hepatic GST [17,18].

Taking into account that 1) AIA/DDC treatment model of acute 
porphyria produces oxidative stress with increased ROS production, 
2) AIA/DDC treatment promotes gluconeogenic and glycogenolytic
blockages leading to lower glucose availability in hepatocytes, and 3)
glucose plays a key role in the regulation of the heme pathway, as well
as in the treatment of human and experimental porphyrias, it seems
interesting to report how the AIA/DDC porphyria model impairs
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depletion. From these findings, treatment of human porphyrias with 
glucose and antioxidants is now best understood.
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Figure 1: Scheme on the effect of AIA/DDC treatment on different metabolic routes (pentose phosphate pathway, heme pathway, ROS generation, GSH metabolism) 
leading to oxidative stress, toxic response Glucose decrease and porphyria exacerbation.
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