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Introduction
The functional status of lymphocytes is tightly linked to metabolism 

as glycolysis and mitochondrial respiration supply lymphocyte 
activation with necessary intermediates. It is currently accepted 
that resting lymphocytes such as naïve or memory T cells utilize 
oxidative phosphorylation for ATP production. Following activation, 
metabolism in T cells switches from catabolic to aerobic anabolic 
glycolysis and glutaminolysis. This transition is similar to metabolic 
shift in tumor cells, described as the Warburg effect [1,2]. In Warburg-
shifted activated T cells, glucose transport is upregulated leading to an 
overall rise in intracellular glucose levels that result in high production 
of pyruvate. Further, pyruvate is converted into lactate and secreted out 
of cells. Also, glycolytic reactions are involved in multiple metabolic 
pathways, such as pentose phosphate, responsible for synthesis of 
nucleotides and lipids necessary for the generation of daughter cells 
during cell divisions. At the same time, Fatty Acid β-Oxidation (FAO), 
catabolic metabolism of fatty acids, is down-modulated in activated T 
cells. Such T cell metabolic reprogramming is coordinated by engaged 
T Cell Receptor (TCR)-triggered intracellular pathways, for example, 
Akt/mTOR axis [1,2].

Lymphocyte differentiation into various subsets induces radical 
changes in requirements of lymphocytes for their persistence and 
survival. Upon activation, CD4+ T cells differentiate into several subsets 
such as Th1, Th2, Th17, and Treg. These Th subsets are involved in the 
regulation of inflammation including chronic inflammatory processes 
[3]. During the development, activation and differentiation of CD8+ T 
cells, cell surface free thiols are upregulated following receptor ligation 
and reactive oxygen intermediates production during infection to 
prevent overoxidation of surface proteins [4]. These differentiation 
paths are also dependent on environmental factors, such as polarizing 
cytokines, and rely heavily on metabolic status. For example, activated 
T cells lose their dependence of IL-7 and instead require IL-2 and 
IL-15 that promote mitochondrial biogenesis. Similarly, fatty acid 
β-oxidation favors differentiation of Treg cells while Th17 cells utilize 
predominantly glycolysis [5].

Although the role of mitochondria in T cell death was known for a 
long time, its function in T cell activation was not clear until recently. 
It is well known that inner mitochondrial membrane carries positive 
electric charge. This forms mitochondrial membrane potential (MMP) 
by the directed transport of protons from matrix into the intermembrane 
space during oxidation of respiratory substrates. In early studies, it has 
been established that upon T cell activation mitochondria undergoes 
hyperpolarization with elevated MMP [6,7]. This alteration in MMP is 
accompanied by a rise in ROS production and serves as a checkpoint for 
T cell death [8]. Dramatic changes in MMP and ATP production were 
described in T cells from patients with systemic lupus erythematosus 
[8,9] and with HIV-1 infection [10]. These studies proposed the 
important role of mitochondria in lymphocyte activation.

Although, in activated T cells, glycolysis predominate mitochondria 
in terms of ATP synthesis, mitochondrion still plays a major role in the 

regulation of intracellular signaling via production of Reactive Oxygen 
Species (ROS). Indeed, ROS maintains Nuclear Factor of Activated T 
cells (NFAT)-dependent stimulation of T cells including IL-2 production 
and antigen-specific expansion [11]. At least two mitochondrial sources 
are responsible for superoxide anion O2- production in activated T 
cells: glycerol-3 phosphate Dehydrogenase and complexes I and III of 
the respiratory chain [11-13]. Further, O2- is converted into hydrogen 
peroxide (H2O2) by mitochondrial superoxide dismutase; H2O2 diffuses 
into the cytosolic compartment where it participates in activation of 
NFAT [14]. Production of O2- by respiratory chain in activated T cells, 
like in other cell types, is mediated by mitochondrial calcium uptake 
mechanisms, thus coupling T cell receptor-driven cytosolic Ca2+ rise 
with Ca2+-dependent ROS production in mitochondria [11].

In addition, an important role was shown for mitochondria in 
memory T cells. For example, IL-15 cytokine, which is crucial for T 
cell memory, promotes mitochondrial biogenesis, and up-regulation 
of Carnitine Palmitoyl Transferase CPT1, a key rate-limiting enzyme 
involved in fatty acid oxidation in mitochondria. These changes lead 
to an elevation in mitochondrial spare respiratory capacity, thereby 
increasing T cell responsiveness to various stimuli such as repeated 
antigen challenge [2]. Consequently, memory T cells upon reactivation 
respond faster to stimuli than naïve T cells [15]. Effector memory T cells 
lacking lymph node homing receptors CCR7 and CD62L are capable 
of screening antigens in non-lymphoid tissues have higher migratory 
potential, which is associated with elevated expression of mitochondrial 
metabolic genes including uncoupling proteins 2 and 3 [16].

Based on the important role of bioenergetics in the development 
of T cell immunity, it is logical to propose that bioenergetics 
manipulation will have major bearing on the success of T cell-based 
immunotherapy. Identification of molecular targets that can intercept 
mitochondrial metabolism or glycolytic switch might influence the 
fate of T cells, thus giving rise to new tools for refining anti-tumor 
immune response. An approach for the treatment of graft-versus-host 
disease has been proposed based on the use of Bz-423, a small-molecule 
inhibitor of mitochondrial ATP synthase; Blocking of latter leads to 
hyperpolarization of MMP, increased ROS production and induction 
of apoptosis in alloreactive T cells [5,17]. The role of mitochondrial 
ROS in the activation of T cells [11-13] might give rise to another 
therapeutic strategy, i.e. treatment with antioxidants. Indeed, a number 
of mitochondria-targeted antioxidants were recently characterized 
such as Mito vitamin E, mitotempo, mitoQ etc. It was shown that 
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mitochondrial ROS stimulates HIF-1 mediated glycolysis as well as 
Akt and Erk activation, thereby supporting cell growth and reducing 
cell death [18]. Thus, scavenging of ROS in mitochondria would affect 
metabolic reprogramming and fate of T cells.

Attenuation of glycolysis by hexokinase inhibitor, 2-DeoxyGlucose 
(2-DG), was shown to down-modulate Th17 differentiation thus 
decreasing disease severity in experimental autoimmune encephalitis 
[19]. Furthermore, 2-DG enhanced CD8+ T cell memory formation 
due to up-regulation of transcription factors Tcf7 and Lef1 defining 
memory T cell stemness. As a result, tumor-bearing mice treated with 
2-DG displayed more lymphocyte infiltration, cytokine production
and tumor rejection [20]. Another pharmacological agent, etomoxir,
inhibits FAO in Treg cells-natural attenuators of anti-tumor T cell
immunity. This makes etomoxir a potential drug to enhance cancer
immunotherapy [5].

New strategies to target metabolic changes in T cells, for selective 
immunomodulation, will be complemented by the rapidly emerging 
data in the near future. Although the full picture of metabolic 
changes in T cells following activation is still far from completely 
understood, existing results give opportunities for designing new 
strategies combining metabolism-based approaches with classical 
immunotherapeutic regimens. 
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