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Introduction
The cumulative distribution function (CDF) play an important role 

in financial mathematics and especially in pricing options with Black-

Scholes Model. The probability density function defined by ( )

2

2
 

2

x

exϕ
π

−

= . 

The (C.D.F.) function denoted N(z) given by ( ) ( ) ( )  
z

N z P Z z x dxϕ
−∞

= ≤ = ∫ .

This function does not have a closed form. His evaluation is an 
expensive task. For evaluate the (CDF) at a point z we need compute 
the integral under the probability density function (PDF). In much 
research we find approximations, with a closed form, for the area under 
the standard normal curve. Otherwise, we need consulting Tables of 
cumulative standard normal probabilities. Hence, in the literature, we find 
several approximations to this function from Polya [1] to Yerukala [2].

Improving Hart Approximation
We consider the case of z ≥ 0. For z < 0, N(z)=1–N(–z).

The original Hart’s approximation given by [3]:
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The absolute error denoted by E(z)=|N(z) – NHart(z).

Figure 1; show the graph of E as function of 0 ≤ z ≤ 5 (for ≥ 5, maxz 
E(z) ≤ 4.4e – 009)

Hence, for 0 ≤ z ≤ 10, we have maxz E(z)=0.004303453286189 ≤ 
0.004304.

This formula have the form: ( )
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We find a, b, c, and d that the MEA was the smallest possible. 
Numerical experiences show that the corresponding values of thus two 
parameters are (Tables 1 and 2):

a=0.39894, b=0.5078, c=0.79758 and d=0.4446

Hence, for 0 ≤ z ≤ 5, we have the new approximation to the (CDF) 
given by: 
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Figure 2 gives the curves of original absolute error and the new 
absolute error

Improving Polya Approximation

The second approximation have the following form (Figures 3 and 4)
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Abstract
This paper, presents two news approximations to the Cumulative Distribution Function (CDF). The first 

approximation 22 improves the accuracy of approximation given by Hart. In this first new approximation, we reduce 
the maximum absolute error (MAE) from, 0.004304 to 2.707e-004.For the second new approximation, Aludaat and 
Alodat was reduce the (MAE) from, 0.00314 to 0.001972. In this paper, we reduce the (MAE) to 0.001623. However, 
the first approximation is more accurate and its inverse is hard to calculate. The second new approximation is less 
accurate, but his inverse is easy to calculate.

Figure 1: Hart’s Error as function of variable z for 0≤z≤5, shows that M.E.A. 
occurs in [0.2;0.5].
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Aludaat and Alodat [4] proposed the same formula with 8
a π
=  

instead of 
2a
π

=

They obtain the maximum absolute error maxz|NAludaat(z) – 
N(z)=0.001971820656170. In this paper, we chose a=0.62306179. In 
this case the MAE is maxz|NMalki(z) – N(z)=0.001622801925711 [5-9].

Conclusion
We have proposed two approximations to the cumulative 

distribution function of the standard normal distribution. The first 
approximation improve the Hart’s formula in accuracy. The second 
new approximation improve the improving Polya’s formula given by 
Aludaat KM and Alodat MT [4].

We hope an application of the first approximation to option pricing 
of a Call European option based on Black-Scholes formula.
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Figure 2: Comparison the original absolute error with a new absolute error. 

Figure 3: The optimal parameter a∈[0.6230;0.6232].

Figure 4: Curve of M.E.A as function of variable z.

z N(z) NHart(z) E(z)
 0.2 0.5793 0.5833 0.0041
 0.3 0.6179 0.6222 0.0043
 0.4 0.6554 0.6595 0.0041
 0.5 0.6915 0.6952 0.0037

Table 1: Shows that M.E.A. occurs in [0.2;0.5].

Parameter a M.A.E.
2/π(Polya) 0.003138181653387 

/ 8π  (Aludaat) 0.001971820656170

0.623060 0.001623086812595
0.62306179(Malki) 0.001622801925711

0.623062 0.001622820064148

Table 2: This chose a=0.62306179 is justified by the following table.
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