alexa UHT Treatment of Milk and Dairy Products

ISSN: 2329-888X

Advances in Dairy Research

Reach Us +441202068036

UHT Treatment of Milk and Dairy Products

Nivedita Datta*
School of Food and Nutritional Sciences, University College Cork, Ireland
*Corresponding Author: Nivedita Datta, Marie Sklodowska-Curie-Career FIT Fellow School of Food and Nutritional Sciences, University College Cork, College Road, Cork T12 YN60, Ireland, Tel: +353872758889, Email: [email protected]

Received Date: Mar 23, 2018 / Accepted Date: Mar 24, 2018 / Published Date: Mar 26, 2018


Keywords: UHT treatment; Milk; Dairy products


Global consumptions of Ultra-high-temperature (UHT) treated milk and dairy products are on the increase. The UHT treated dairy products are mainly custard and high protein beverages. Milk protein ingredients, e.g. milk protein concentrate (MPC) or isolate (MPI) or milk casein concentrate (MCC) or whey protein concentrate (WPC) or isolate (WPI) are typically added into bovine milk to enrich the protein component of UHT beverages, or to water to make a protein-based beverage. The main reason for increased consumption UHT treated milk and dairy products lies in the fact of its long shelf-life at ambient temperature storage. At present the shelf-life of UHT treated milk and dairy products at ambient temperature storage is 3-9 months.

UHT treatment comprises of heating milk and dairy products to a high temperature (~135-145°C) and holding it at that temperature for a short time (1-10 sec) followed by rapid cooling in a continuous-flow system. This produces a “commercially sterile” product, i.e. a product in which bacterial growth is highly unlikely to occur at ambient storage conditions. Since heating and cooling takes place relatively quicker in a UHT process, the heat penetration problems of in-container sterilization are avoided. This rapid heat transfer rate minimizes undesirable changes in the taste and nutritional quality of the UHT treated products. Since UHT treatment is a continuous process, it produces uniform product quality which does not depend on the size of a container, contrasting in-container sterilization. This attribute is especially important for products containing heat-sensitive ingredients, and highly viscous products (high protein beverages) with poor heat transfer properties.

Aseptic processing consists of UHT processing followed by filling the product into sterile containers in a sterile environment and sealing the containers in a sterile manner in a continuous process. In commercial practice, UHT-processed product is usually transferred to an aseptic tank before it is aseptically filled into packages. This practice offers greater operational flexibility and allows the use of processing and aseptic packaging with different capacities. The most popular aseptic packages are the tetrahedral-shaped paperboard cartons exemplified by Tetra Pak and Combibloc products, although multilayered plastic bottles are also now popular.

The introduction of UHT treatment in milk and dairy products, coupled with aseptic packaging, made a significant improvement in the bacteriological safety of milk and extended its shelf-life from the typical 2-3 weeks for refrigerated pasteurized milk to 3-9 months without refrigeration. UHT treated milk and dairy products do not contain any preservative for its extended shelf-life at room temperature, and have a clean label, a vital point for today’s additiveconscious consumer.

UHT products are very appropriate in tropical countries where environmental temperatures are high, and home delivery and refrigeration are not common. UHT treated milk and dairy products are also ideal for other situations involving lack of refrigeration or requiring added convenience, e.g. emergency preparedness, traveling, disaster response, camping, and space travel. In addition, UHT treatment could be valuable for countering bio-terrorism as it can produce bacteriologically safe product even if the raw material is contaminated with pathogenic organisms.

UHT treatments are also used in some special cases where other processes are inadequate. As an example, in the production of microfiltered whole milk, the cream part of the milk, which contains fat globules which cannot pass through the microfiltration membrane, is UHT processed and finally mixed with the microfiltered skim milk to produce an extended-shelf-life (ESL) product.

Although, UHT technology has been successfully applied in commercial dairy processing for more than fifty years, several aspects of the technology still present challenges for UHT processors. A clear understanding of the ambient storage of UHT treated products is required for ensuring quality of the products. The ambient temperature storage of UHT treated products is a mandatory requirement, where the product could remain stable throughout the entire period of shelf life. However, the local understanding of what constitutes ambient temperature varies from 10-55°C in different parts of the world, which needs to be taken into consideration during shelf-life assessment of UHT treated milk and dairy products. Moreover, exporting UHT treated products from long distance countries to local market (China, South East Asia and Africa) demands longer shelf-life (more than twelve months). As stated earlier, the physical and chemical changes occurring during heating and storage limit the shelf life of UHT treated products. The most common storage defects in UHT treated milk and dairy products include gelation, sedimentation, fat separation, and the presence of off-odours. Improvement of heat stability of whey proteins and reduction of viscosity of MPC are the key processing steps which also present challenges for UHT researchers and processors for manufacturing shelf-stable high protein beverages. Carrying out innovative research on these aspects and development of rapid methods to underpin the storage defects of UHT treated products are of utmost importance in providing the control mechanisms to achieve better quality UHT treated milk and dairy products.

Citation: Datta N (2018) UHT Treatment of Milk and Dairy Products. J Adv Dairy Res 6:e133. DOI: 10.4172/2329-888X.1000e133

Copyright: © 2018 Datta N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Relevant Topics
Article Usage
  • Total views: 1861
  • [From(publication date): 0-2018 - Jan 19, 2019]
  • Breakdown by view type
  • HTML page views: 1701
  • PDF downloads: 160

Post your comment

captcha   Reload  Can't read the image? click here to refresh