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Abstract
The ultrastructural difference of the alimentary tract of the insectivore, Scincus scincus and the carnivore, Natrix 

tesstellata was described by using scanning and transmission electron microscopy. The oesophagus of S. scincus 
with many prominent longitudinal folds while in N. tessellata it has many primary longitudinal folds and secondary 
ramification. The oesophageal epithelium of both species has numerous goblet cells. The mucosal epithelial cells 
in both species contain large nucleus, endoplasmic reticulum, lysosomes and some vacuoles. Stomach had a 
meshwork of primary folds in S. scincus and it forms various folds forming many discrete, irregular pockets in N. 
tessellata. The mucosal cells in the stomach of S. scincus have many secretory granules while in N. tessellate it 
provided with numerous mucinogen granules in the gastric columnar cells. In S. scincus, the intestinal mucosa with 
many primary folds but it appeared as longitudinal secondary mucosal folds in Zig-Zag pattern enclosing a number 
of concavities in N. tessellata. The intestinal mucosal cells in both species consisted of regularly formed microvilli. 
There were numerous goblet cells in the intestine of both species. In conclusion, structural variation of the alimentary 
tract in the two species examined was related to difference in feeding habits.
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Introduction
The digestive system is as important as food is to survival in animals. 

The anatomical characteristics of this system are dependent upon the 
food, habitat and nutritional status of the organism [1]. In reptiles, 
the digestive system contains all the structures present in other higher 
vertebrates, from the oral cavity to the cloaca. The oral cavity is lined 
by mucous membrane made by non-ketatinized stratified squamous 
epithelium with salivary glands distributed in the submucosa [2]. 

In reptiles, the first vertebrates to adapt completely too the terrestrial 
life, the oesophagus shows adaptive modifications from group to group, 
the stomach varies in shape and the intestine may be highly convoluted 
as in turtles or relatively straight as in snakes to facilitate absorption, 
secretion and excretion [3-6]. 

The ultrastructural studies of the Gastrointestinal tract have been 
widely used to provide a detailed anatomical description that betters 
to understanding the operation of this system as in Typhlopid Snake 
Rhamphotyphlops Braminus and Scincus scincus [7,8]. Carrassón & 
Matallanas [9] used SEM (Scanning electron microscope) to study the 
digestive tract in Dentex dentex; while Imtiyaz & Ashok [10] used the 
same technique to examine the intestinal tract of Schizothorax curifrons.

The present work aims to study the ultrastructural features of 
the digestive tract of two reptilian species Scincus scincus and Natrix 
tessellate, inhabiting different locations and with different mode of 
feeding , in order to increase current knowledge in basic structures of 
the reptilian alimentary tract. 

Materials and Methods
Sample collection

5 specimens of both species, Scincus scincus and Natrix tessellata 
were used. The first species was capture from sandy desert areas of Sinai 
and it feeds on a variety of insects while the second one is collected 
from irrigated canals of Faiyum. It feed on fish and amphibian. The two 
species were dissected and oesophagus, stomach and intestine were 

removed. The animals were anaesthetized and decapitated according 
to the international protocol for biomedical Investigation with Human 
Being and Animals.

Scanning electron microscopy
The dissected oesophagus, stomach and intestine were cut into pieces 

and fixed in glutraldehyde in 0.1M cacodylate buffer. The specimen 
were post-fixed in a solution of 1% osmium tetroxide in 0.1 M sodium 
cacodylate buffer for one hour, and washed several times in the 0.1 M 
sodium cacodylate buffer. The tissues were dehydrated through either 
acetone or alcohol series, critical point drying and platinum-palladium 
ion-sputtering were applied. The specimens were then investigated by 
scanning electron microscopy (JSM -5400LV; JEOL).

Transmission Electron Microscope (TEM)
Small fragments of the oesophagus, stomach and intestine were 

fixed in fresh 3 % glutaraldehyde in 0.1 M cacodylate buffer (Ph 7.2) for 
4 h. Afterwards, the specimens were post-osmified in 0.1 M cacodylate 
buffer (Ph 7.2) for 2 h. They were then washed again in the buffer, 
dehydrated, and embedded in epoxy-resin araldite mixture. Semi-
thin sections were cut by ultramicrotom, stained with toluidine blue, 
then examined. Ultrathin sections were cut using a diamond knife and 
stained using uranyl acetate and lead citrate, then examined by Cx100 
transmission electron microscope (JEOL, operated at an accelerating 
voltage of 60 Kv).

Journal of Cytology & HistologyJo
ur

na
l o

f Cytology &Histology

ISSN: 2157-7099



Page 2 of 7

Citation: Abo-Eleneen RE, El- Bakry AM, Abdeen AM (2014) Ultrastructural Study of the Alimentary Tract of Two Reptilian Species the Lizard Scincus 
scincus and the Snake Natrix tessellata. J Cytol Histol S4: 010. doi:10.4172/2157-7099.S4-010

 J Cytol Histol  Histology and Histopathology  ISSN: 2157-7099 JCH, an open access journal

Results
SEM observation showed that, the oesophageal mucosal surface 

in S. scincus was provided with many prominent longitudinal folds 
leaving long furrows in between them. Many circular opening of goblet 
cells and well-defined wavy micriridges were also detected (Figure 1a-
c). While in N. tessellata, the oesophageal surface has many primary 
longitudinal folds of different sizes and secondary ramification (Figure 
2a). Some pocket marks representing the luminal surface of goblet cells 
were found in between the cell junctions (Figure 2b). The superficial 
oesophageal epithelium provided with fingerprint-like microridge 
alternates in some regions with apical microvilli (Figure 2c).

By TEM, The oesophageal mucosal cells of S. scincus, containing 
oval-shaped nucleus oriented parallel to the epithelial surface (Figure 
3a). Some mitochondria, vacuoles, endoplasmic reticulum and 
lysosomes were observed (Figures 3a and 3b). Numerous goblet cells 
are found in the mucosa of stratified epithelium occupying the whole 
length of the oesophagus (Figure 3c). On the other hand, the mucosal 
cells in the oesophagus of N. tessellata, with an oval nucleus (Figure 
4a). Lysosomes, vacuoles and numerous mitochondria were found 
scattering in the cytoplasm of the epithelial cells (Figure 4a and 4b). 
Goblet cells and microvilli were also observed (Figure 4c).

In S. scincus, stomach had a meshwork of primary folds by SEM 

Figure 1: SEM micrograph of the oesophagus of Scincus Scincus, showing 
(a) many prominent longuitudinal folds. (Scale bar, 50 µm). (b) many goblet 
cells (arrows) Scale bar, 50 µm. (c) Surface wavy microridge (Scale bar, 
1 µm).

Figure 2: SEM micrograph of the oesophagus of Natrix tessellata, showing 
(a) primary and secondary folds. (Scale bar, 50 µm). (b) many goblet cells 
(Scale bar, 20 µm). (c) apical fingerprint-like microridge(MR) alternates with 
microvilli (MV) in some regions (Scale bar, 1 µm ).

Figure 3: TEM micrograph of the oesophagus mucosal cells of Scincus 
scincus, showing (a) large nucleus (N) (arrow), endoplasmic reticulum (ER) 
and lysosomes (arrowhead). (Scale bar, 2 µm). (b) the basal membrane 
(BM), mitochondria (M) and vacuoles (arrowhead). (Scale bar, 10 µm). (c) 
numerous goblet cells (GC). (Scale bar, 2 µm).

Figure 4: TEM micrograph of the oesophagus mucosal cells of Natrix 
tessellata, note, (a) nucleus (N) and lysosomes(LY). (Scale bar, 2 µm). (b) 
the basal lamina (BL), mitochondria (M) and vacuoles (V). (Scale bar, 500 
nm). (c)  microvilli (MV) and the goblet cells (GC). (Scale bar, 500 nm).
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observation, and the luminal surface of columnar cells was pentagonal 
in shape and the gastric glands open into gastric crypts in the stomach 
(Figure 5a). Many gastric pits were also observed (Figure 5b).

In N. tessellata, under low magnifications of SEM, the mucosal 
surface of stomach was seen to form various folds forming many 
discrete but irregular pockets (Figure 6a). Under higher magnifications, 
it was found to be divided into pentagons and hexagons (Figure 6a and 
6b). These correspond to the luminal surface of the epithelial cells. 
Occasional presence of prominent gastric pits surrounded by the 
epithelial cells was detected in this region (Figure 6b). Many gastric 
crypts were appeared in which gastric gland open (Figure 6b).

 The mucosal cells of stomach of S. scincus, containing spherical 
secretory Granules that filled with homogenous material (Figure 7a). 
A euchromatinic nucleus, endoplamic reticulum, vacuoles, lysosomes 
and many small mitochondria were also observed (Figure 7b and c). 
While in N. tessellata, the epithelium of the stomach has numerous 

Figure 5: SEM micrograph of the stomach of Scincus scincus, showing 
(a) primary longuitudinal folds and the luminal surface of epithelial cell 
represented by pentagonal elevations, Note many gastric crypts appeared 
(arrow) (Scale bar, 50 µm ).  (b) the presence of gastric pit (arrow). (Scale 
bar, 10 µm).

Figure 6: SEM micrograph of the stomach of Natrix tessellate showing 
(a) various folds and the luminal surface of epithelial cells with pentagonal 
and hexagonal elevations (Scale bar, 100 µm). (b) gastric pit (arrows) and 
crypts of the gastric glands. (Scale bar, 50 µm).

Figure 7: TEM micrograph of the stomach mucosal cells of Scincus 
scincus, showing (a) numerous electron dense secretory granules (S). 
(Scale bar, 10µm). (b) endoplasmic reticulum (ER), nucleus (N) and 
vacuoles (V). (Scale bar, 10 µm). (c) Golgi apparatus (GA), mitochondria 
(M) and lysosomes (LY). (Scale bar, 2 µm).

Figure 8: TEM micrograph of the stomach mucosal cells of Natrix 
tessellata, showing (a) numerous granules (G). (Scale bar, 2 µm). (b) 
vacuoles (V) and the basal position of the nucleus (N) with a prominent 
nucleolus (arrowhead). (Scale bar, 2 µm). (c) numerous mitochondria (M) 
and lysosomes (LY). (Scale bar, 2 µm).

mucinogen granules (Figure 8a). The epithelial cells appeared with oval 
euchromatinic and irregular nucleus with a large nucleolus, vacuoles, 
numerous mitochondria and lysosomes were also seen (Figure 8b and 
8c). 

In S. scincus, Under scanning electron microscope, there was many 
primary folds of intestinal mucosa extends along the entire length of 
the intestinal tract and it observed projecting into the lumen without 
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following a definite pattern in their orientation and many goblet cells 
observed (Figure 9a and 9b). While the most characteristic feature of the 
intestine in N. tessellata is the presence of irregular, wavy longitudinal 
secondary mucosal folds in the fashion of Zig-Zag pattern enclosing a 
number of concavities in between them (Figure 10). Each species have 
many scattered goblet cells and lacks granular crypts. 

At ultrastructural level, the columnar cells of the intestine of S. 
scincus have many mitochondria and microvilli toward the lumen 
and are joined together at the apical surface by junctional complexes. 
Lysosomes, vacuoles and mitochondria are scattered in the supranuclear 
cytoplasm of the enterocyte (Figure 11a). Goblet cells are seen near the 
luminal surface of intestinal epithelium (Figure 11b). A basal nucleus 
with a large nucleolus and rough endoplasmic reticulum are seen in the 
enterocytes (Figure 11c). The mucosal cells in the intestinal epithelium 
of N. tessellata, are consisted of columnar cells bearing microvilli and 
joined at the apical surface by the junctional complex, including the 
evident desmosomes, their cytoplasm contains numerous mitochondria 
and lysosomal bodies (Figure 12a). Goblet cells appeared elongated 
(Figure 12b). The nucleus and vacuoles are seen in the enterocytes 
(Figure 12c). 

Discussion
The structural organization of the digestive system of reptiles is 

similar to higher vertebrates. Among different reptiles, some adaptive 
modifications could be seen in alimentary tract, for instance, the 
epithelial layers in the esophagus of turtles are keratinized in order to 
protect the mucosa from abrasive diets [5,11].

The results of the present work revealed some differences in the 
structure of the oesophagus of both species related to type of food and 
feeding habits of both species. The oesophageal mucosal surface in S. 
Scincus was provided with many prominent longitudinal folds while 
in N. tessellata, the oesophageal surfaces have primary longitudinal 
folds of different sizes and many secondary ramification. This result 
agree with that observed in Uromastyx aegyptius and Varanus niloticus 

Figure 10: SEM micrograph of the intestine of Natrix tessellata, Note wavy  
longitudinal  secondary mucosal folds. (Scale bar, 100 µm).

Figure 11: TEM micrograph of the intestine mucosal cells of Scincus 
scincus, showing (a) microvilli (MV), mitochondria (M) and lysosomes 
(arrow head). Note also, the junctional complexes (JC) situated just below 
the free surface. (Scale bar, 2 µm). (b) goblet cell (GC). (Scale bar, 2 µm). 
(c) Euchromatic nucleus (N). (Scale bar, 2 µm).

Figure 12: TEM micrograph of the intestine mucosal cells of Natrix 
tessellata, containing (a) microvilli (MV) covering the surface of the intestine 
in a regular manner, lysosomes (LY), desmosomes (DE) and abundant 
mitochondria (M). (Scale bar, 2 µm). (b) goblet cell (GC). (Scale bar, 2 
µm). (c) vacuoles (V) and irregular shape of nucleus (N). (Scale bar, 2 µm).
(arrow head). Note also, the junctional complexes (JC) situated just below 
the free surface. (Scale bar, 2 µm). (b) goblet cell (GC). (Scale bar, 2 µm). 
(c) Euchromatic nucleus (N). (Scale bar, 2 µm).

Figure 9: SEM micrograph of the intestine of Scincus scincus, showing 
(a) primary folds. (Scale bar, 100 µm). (b) scattered goblet cells (Scale 
bar, 20 µm).
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[6,12]. This feature is common for the reptiles, Uromastyx philibyi 
[13] and Pristurus rupestris [14]. The esophagus of the crocodile C. 
crocodilus yacare [15] and C. latirostris [16] has longitudinal folds in the 
esophageal mucosa.

The esophagus lumen of the cranial portion in the Japanese lizard 
has no fold. However, the middle and caudal portions are formed of 
very complicated folds [17]. This folds are totally distensible, to enable 
expansion of the esophagus, allowing it to store food that is ingested 
[15]. 

In catfish, the anterior part of the oesophagus was characterized 
by the presence of numerous mucosal folds that may allow maximal 
distension for prey and broken down food, the oesophagus of 
carnivorous fish acted as a constitutive adaptation that protected the 
oesophagus against live prey damages [18].

Our results revealed that the oesophagus of both species possessed 
a high density of goblet cells. The presence of the goblet cells in the 
oesophageal mucosa of Natrix tessellata as well as of other reptiles, 
such as Ablephorous pannonicus [19], Chamaeleon vulgaris [20] and U. 
philbyi [13], agrees with the basic task of the oesophagus which conveys 
food from the buccal cavity to the stomach. This function is facilitated 
by the mucous secretion of the goblet cells, which causes the inner 
surface of the oesophageal lumen to be viscous and thus facilitates the 
swallowing of the prey and it’s gliding through the oesophageal lumen 
to reach the stomach. In Uromastyx aegyptica, the goblet cells of the 
esophagus are rich in acid mucopolysaccharides when compared to the 
small and large intestines [12].

The increased number of goblet cells in the oesophagus of all fish 
species in general was probably due to the absence of salivary glands, 
as the mucin excreted in the oesophagus and buccal cavity compensates 
the absence of salivary glands in fish [21].

In the present species S. Scincus, The oesophageal mucosal 
epithelial surface contain many well-defined wavy micriridges while 
in N. tessellata it provided with fingerprint-like microridge alternates 
in some region with microvilli. Microridges by virtue of their nature 
would seem to spread and hold mucus film secreted by the adjacent 
goblet cells [22]. Microridges have also been reported to be present 
on various epithelial surfaces, such as skin [23], gills [24], which are 
subject to mechanical stress. This would appear to be an advantage in 
having a sculped surface for absorbing impacts [22]. The superficial cell 
layer the oesophageal epithelium in catfish, provided with microvilli 
that indicates an adaptation to rapid ion absorption [25] while the 
presence of fingerprint-like microridges may represent a mechanical 
adaptation that would withstand the trauma resulting from ingesting 
bulky materials [26]. The fingerprint-like microridges observed on the 
esophageal surface cells in N. tessellata are similar to those reported in 
Solea senegalensis [27], in Dentex dentex [9], in Seriola dumerilli [28], in 
Rita rita [29], and in several other seawater and freshwater fishes [25]. 
These ridges have been thought to play an important role of protecting 
the buccal-oesphageal surface from trauma and providing an anchor to 
the mucus secreted from the goblet cells [30].

The oesophageal mucosal cells of the present S. scincus, showed the 
presence of oval-shaped nucleus, the perinuclear cytoplasm contained 
mitochondria, few rough endoplasmic reticulum, lysosomes, few 
electron light vesicles and numerous goblet cells are found in the mucosa 
of stratified epithelium occupying the whole length of the oesophagus. 
These observations are similarly met with in Micropogonias furnieri 
[31], in Uromastyx aegyptius [6] and in Scincus scincus [8]. While, the 
mucosal cells of oesophagus in N. tessellata, are columnar cells with 

basal microvilli. The surface epithelial cells showed large nucleus, 
vacuoles, endoplasmic reticula, lysosomes and numerous mitochondria 
scattering in their cytoplasm. These cells are probably adapted for 
ingestion of small fishes and other small aquatic animals. The goblet 
cells which arranged in the oesophageal epithelia are important for 
rapid and consistent lubrication of food particles during swallowing 
[6,32]. In some reptiles, the stratified and squamous epithelial layers 
of the esophagus are similar to mammals; however, some typical 
modifications were also noted for different species [5] such as Varanus 
niloticus which had columnar epithelia [33]. In lizards, it is formed 
of folds lined by ciliated columnar epithelium with goblet cells. Some 
snakes have mucous glands along their submucosa [5]. The esophageal 
mucosa of Lacerta agilis and Ophisops elegans is composed of ciliated 
columnar and goblet cells [34,11].

In some lizards such as Tachysaurus rugosus, Tiliqua nigrolutea [35] 
and Acanthodactylus boskianus [14] many esophageal glands have been 
observed although the esophagus of crocodilian Caiman latirostris does 
not have submucosal glands in submucosa, but only intraepithelial 
glands [16].

In the present study, as examined by SEM, the stomach of S. scincus 
had a meshwork of primary folds. The luminal surface of columnar 
cells was pentagonal and with many gastric pits. While in N. tessellata, 
the mucosal surface of stomach was form various folds forming many 
discrete but irregular pockets and a prominent gastric pits appeared. 
This observation agrees with that done on Salmo gairdneri [36], in 
Mystus aor [22], and in Rhamdia quelen [37]. In Lates niloticus, the 
complex foldings of stomach may probably provide for the extension 
of the stomach capacity during ingestion and increase the surface area 
during digestion [38]. The complex nature of folding in stomach wall 
would probably allow for stretching during food consumption and 
also increase surface area for digestive activity [22]. Grau et al. [28] 
found that the stomach of Seriola dumerilli displayed a large number of 
primary longitudinal folds which contained secondary folds.

But the cardiac surface of O. angorae is a meshwork of primary folds; 
the fundic and pyloric surfaces have many deep regular longitudinal 
folds with transverse secondary folds [39].

Our result in the present species, N. tessellata, showed that the 
gastric glands open into gastric crypts in the stomach. This result as 
that observed in many fishes that are bottom feeders [40], and they were 
also related to digestion time, and to carnivorous and voracious feeding 
[41]. The secretions of the gastric glands probably protect the mucosa 
from the acidic contents of the stomach as in O. angorae [39]. According 
to Martin and Blaber [42], gastric glands in Ambassidae were packed 
beneath the epithelial layer, but the epithelium did not have goblet cells.

The fine structure of gastric cells of S. scincus, showed that the 
apical part of cytoplasm contained variable numbers of secretory 
granules, vacuoles, lysosomes and many small mitochondria. Similar 
observations were recorded by Abo-Eleneen, Biomy [6,8]. While 
the mucosal cells in the stomach of N. tessellata, contain mucinogen 
granules. These mucinogen granules are discharged from the columnar 
cells to the surface of the mucosa; they form a layer of adherent 
membrane protecting the mucosa which is similar to that found in the 
soft-shelled turtles that have similar food interest as Varanus niloticus 
[43]. The mucinogen granules of Natrix tessellata, were found also in 
fishes, amphibians and birds [44]. In the present study, the endoplasmic 
reticula, lysosomes and vacuoles of the epithelial columnar cells are 
nearly similar to those of some carnivorous fishes such as Channa 
argus, Parasilurus asotus, Pelteobagrus fulvidraco [45] and in Varanus 
niloticus [6].
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 In the present study, SEM observation showed that the intestinal 
mucosa of S.scincus has primary folds along the entire length of the 
intestinal tract. While in N. tessellata it appeared as wavy longitudinal 
secondary mucosal folds in the form of Zig-Zag pattern. Similar 
observations were reported by Jacobshagen, (1937) [46] on studing 
intestine of crocodiles and snakes. Zigzag longitudinal folds of the 
intestinal surface of the present study the same as reported by Clarke 
and Witcomb [47]. A great amount of folds were observed in loop I 
of the intestine of Trichomycterus brasiliensis, increasing the surface 
area, and enhancing the absorptive activity, typical for carnivorous 
species [48]. In Schizothorax curvifrons, the large intestine of is thrown 
into irregularly arranged mucosal folds, minor mucosal folds and the 
concavity being totally absent [49]. The intestinal mucosa of the present 
species lacks granular crypts. This outcome is closely similar to that 
recorded in both lacertilian and ophidian species [19].

The columnar cells of the intestine of S. scincus, have many 
mitochondria and microvilli located toward the lumen and are joined 
together at the apical surface by junctional complexes. Lysosomes, 
vacuoles, endoplasmic reticulum and mitochondria were scattered 
in the supra-nuclear cytoplasm. These ultrastructural observations 
confirm the earlier findings of Goro-Takahata [50] in Oryzias latipes, 
Banan khojasteh et al. [51] in Oncorhynchus mykiss, Dai et al. [52] in 
Monopoterus albus and Abo-Eleneen [6] in Uromastyx aegyptius. 

The intestine of S. scincus contained goblet cells. These cells are 
similar to those described in fishes, amphibia, reptiles and mammals [53-
55] and other reptiles [56,57]. The goblet cells contain mucosubstance 
mainly formed by carboxylated glycoconjugates [58]. 

At the ultrastructural level, the enterocytes of the epithelium of 
N. tessellate, showed regular microvilli to increase the surface area. 
The presence of microvilli and lysosomes in the apical region of the 
intestinal columnar epithelial cells play part in collection of the 
nutritive substances from the lumen and their intracellular digestion. 
The enterocytes are joined laterally near the free surface by junctional 
complexes. Similar observations were recorded by Caceci and Hrubec 
[59]. The goblet cells of the intestine of N. tessellate contained many 
mucosubstances and secrete more mucilage for efficient digestion. This 
finding is similar to that found in the rice field eel Monopterus albus 
[52], in other fish species [28,60-63] and in Varanus niloticus [6] and in 
Typhlopid Snake Rhamphotyphlops Braminus [7]. 

The presence of many mitochondria suggests that a high amount 
of energy is required for active transport. Similar observations were 
recorded by Arellano et al. and Alexandre et al. [64,65]. 

 We can conclude from the present study that the ultrastructural 
differences in the alimentary tract among the two reptilian species 
examined exhibited important specific features reflecting the mode of 
life and feeding habits of these animals. 
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