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Abstract

Epidermal growth factor receptor (EGFR) is a member of the EGFR tyrosine kinase family, which consists of
EGFR (erbB1/Her1), Her2/neu (erbB2), Her3 (erbB3) and Her4 (erbB4). HER receptors are ubiquitously expressed
in various cell types, under homeostatic conditions, receptor activation is tightly regulated by the availability of
ligands, which collectively form the EGF family.
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Introduction
Several intra cellular pathways are tightly connected to the EGFR

status, among them the two main signalling pathways activated by
GFR include the ras/raF/meK/erK and the Pi3K/aKt axes; however, Src
tyrosine kinases, PlCγ, PKC, and STAT activation and downstream
signalling have also been well documented [1,2].

Literature Review
A direct link between EGFR activation and angiogenesis has been

described. EGFR activation can contribute to the production of several
proangiogenic factors in tumours, including VEGF and basic fibroblast
growth factor [3,4].

Tumours that harbour activated oncogenes show often dependence
on the prolonged activity of oncogenes and to the signalling pathways
which makes them sensitive to drugs that target such pathways [5,6].

Several approaches have been developed to target the EGFR to
interfere with EGFR-mediated cellular effects and the most utilised are
monoclonal antibodies directed against the extracellular receptor
domain and small-molecule compounds that interfere with
intracellular EGFR tyrosine kinase activity [7].

Despite the initial response to such treatments virtually all the
patients carrying an EGFR mutated progress. Several resistant
mechanisms have been identified reflecting nonuniform response to
treatment and a possible role for intratumor heterogeneity [8].

The response rate (RR) to the Tyrosine Kinase Inhibitors (TKIs) in
patients with EGFR-mutated about 75%, which indicates a 25% of
primary resistance to such treatments.

Several mutations, even within exons 18 to 21, the most common
site for mutations, could be responsible for primary resistance to EGFR
TKIs (e.g. small insertions or duplications in exon 20) [9]. In vitro and
in vivo studies have shown that such mutations are less sensitive to
EGFR TKIs than the exon 19 deletion and L858R mutants [10,11].

Another possible mechanism of resistance is the presence of other
genetic lesions that affect signaling downstream of EGFR such as PI3K
mutations, loss of PTEN and crosstalk between EGFR and insulin-like
growth factor receptor 1 (IGF1R) [12-14].

A well-known mechanism of acquired resistance to TKIs in EGFR
mutated non-small cell lung cancer (NSCLC) patients (incidence up to
50%) is the development of a second-site mutation in the threonine
gatekeeper residue at position 790, T790M [15]. Interestingly in 2011
Rosell et al. found that in 35% of patients with EGFR mutated NSCLC
the T790M mutation can be detected prior to EGFR TKI treatment
[16].

Discussion
In preclinical model of adenocarcinoma with exon 21 missense

mutation (L858R) and exon 20 missense mutation (T790M) the
combination of gefitinib with the vascular endothelial growth factor
(VEGF) inhibitor bevacizumab was showed to inhibit tumour growth
[17] and to overcome the primary resistance to TKIs. Level of signal
transducer and activator of transcription 3 (STAT3) are increased
almost immediately after starting erlotinib treatment in EGFR-mutant
NSCLC cells [18]. Furthermore, STAT3 activation through IL- 6R and
FGFR, in response to inhibition of an oncogenic kinase might
significantly contributes to resistance of the cell population to drug
treatment and consequently limits the efficacy of such agents [19]. It
was also noted to play a key role in the interleukin 6 induced
expression of VEGF in cervical cancer. VEGF was found to be
inhibited by blocking STAT3 or by treatment with an anti-VEGF
antibody [20]. IL-6 also play an essential role in activating the Scr
family kinase and subsequently YES-associated protein 1 (YAP1) [21].
In a recent publication Chaib et al. [22] showed that Scr-YAP1
signalling limits EGFRTKI response, in conjunction with STA3, in lung
cancer. This has strengthened the idea that EGRF TKI monotherapy is
inadequate for NSCLC patients EGFR mutant. The co-activation of a
broader network of signalling events limits the EGFR response.
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Conclusion
Based on those findings combining EGFR-TKIs with VEGF-

neutralising antibodies might potentially delay or even inhibit the
development of resistance driven by the interleukin 6–STAT3-VEGF
pathway in EGFR-mutant NSCLC and represents a new therapeutic
approach that is warranted clinical studies.
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