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Introduction
For the analysis of square contingency tables with same row and 

column categories, one of the interest of many statisticians is what 
structure of symmetry for probabilities in the table there is. Bowker 
[2] considered the symmetry (S) model which indicates there is a 
symmetric structure of cell probabilities with respect to the main 
diagonal of the table. For ordinal square contingency tables, Agresti 
[3] proposed the linear diagonals-parameter symmetry (LDPS) 
model which indicates an asymmetric structure such that the ratios of 
symmetric cell probabilities vary linearly depending on the distance 
from main diagonal. The LDPS model is appropriate if it is reasonable 
to assume that there is an underlying continuous distribution which 
is bivariate normal with equal marginal variances. Tomizawa [4] 
described the extended LDPS (ELDPS) model which is appropriate 
assuming that there is an underlying bivariate normal distribution 
which does not require the equality of marginal variances. The LDPS 
and ELDPS models have theoretical justifications in the sense that 
the restrictions of the ratios between symmetric probabilities in each 
model have similar form as those in the bivariate normal density 
function [3,4]. Tahata, Yamamoto and Tomizawa [5] considered the 
normal distribution type symmetry (NDS) model which indicates a 
cell probability directly has similar form as a bivariate normal density 
with equal marginal variances. Yamamoto, Nakane and Tomizawa [1] 
proposed more parsimonious model, described the restricted normal 
distribution type symmetry (RNDS) model, which indicates a cell 
probability has similar form as a bivariate normal density with equal 
marginal means and variances.

First purpose of present paper is to consider a new model which 
would be appropriate if it is reasonable to assume that there is an 
underlying bivariate normal distribution even if the marginal means 
and variances are respectively unequal.

Decompositions of a model are given by several statisticians, 
for example, Caussinus [6] gave the theorem that the S model holds 
if and only if both of (1) the quasi-symmetry model which indicates 
symmetry of the odds ratios [6] and (2) the marginal homogeneity 
model which indicates the row and column marginal distributions are 
identical [7] hold. For decompositions of a model, several statisticians 
described partitioning of goodness-of-fit test statistic for the model. 

Aitchison [8] discussed the asymptotic separability. Read [9] practically 
the partitioning of test statistic of model for square contingency tables. 
Tomizawa and Tahata [10] showed the likelihood ratio statistic for 
testing the goodness of fit of the S model is asymptotically equivalent 
to the sum of those for the quasi-symmetry and marginal homogeneity 
models.

Second purpose of present paper is to give the decomposition of 
the RNDS model into the proposed model and marginal means and 
variances equality. In the data analysis, the decomposition may be 
useful for seeing the reason of the poor fit when the RNDS model fits 
the data poorly.

Third purpose of present paper is to show that the test statistic for 
goodness of fit of the RNDS model is asymptotically equivalent to the 
sum of those for the decomposed models.

In present paper, Section 2 reviews models for square contingency 
tables. Section 3 proposes a new model based on bivariate normal 
density. Section 4 gives the decomposition of the RNDS model using 
the proposed model. Section 5 describes the goodness-of-fit test. 
Section 6 shows the partitioning of test statistic for the RNDS model. 
Section 7 gives an example applying the proposed model to contingency 
table data of decayed teeth. Section 8 gives some numerical simulation 
studies. Section 9 presents concluding remarks.

Review of Models
Consider an r × r square contingency table with same ordered 

categories. Let pij denote the probability that an observation will fall in 
the cell in row i and column j (i=1,…,r; j=1,…,r). Bowker [2] described 
the S model defined by:
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Abstract
For square contingency tables with ordered categories, Yamamoto, Nakane and Tomizawa [1] proposed the restricted 

normal distribution type symmetry (RNDS) model that the cell probability has a similar form as a bivariate normal density 
with equal marginal means and variances. This paper proposes a new model that has more relaxed constraints based on 
a bivariate normal density. It also gives a decomposition of the RNDS model into the proposed model and marginal means 
and variances equality. Moreover it is shown that the test statistic for goodness-of-fit of the RNDS model is asymptotically 
equivalent to the sum of those for the decomposed models.
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pij=Ψij (i ≠ j), 

whereΨij=Ψji. Agresti [3] proposed the LDPS model defined by:

( )
( )
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i j
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i j
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− <=  ≥

where Ψij=Ψji. This indicates that the probability that an observation 
will fall in the (i,j)th cell is δj-i times higher than the probability that it 
falls in (j,i)th cell, i<j. A special case of the LDPS model obtained by 
putting δ=1 is the S model. The LDPS model is also expressed as:
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Tomizawa (1991) proposed the ELDPS model defined by:
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whereΨij=Ψji. This indicates that the probability that an observation will 
fall in the (i,j)th cell is ( )( ) / 2j i j ij iδ γ − +−  times higher than the probability 
that it falls in (j,i)th cell, i<j. The ELDPS model is also expressed as:

( )( ) ( )/ 2    j i j iij j i

ji

p
i j

p
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Consider the continuous random variables U and V having a 
joint bivariate normal distribution with means E(U)=µ1 and E(V)=µ2, 
variances ( ) 2

1Var U σ= and ( ) 2
2Var V σ= , and correlation Corr (U,V)=ρ. 

Then the ratio of joint bivariate normal density f (u,v) is:

( )
( ) ( ) ( ) ( ) ( )1 21 2
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Agresti [3] pointed out that f(u,v)/(v,u) has the form τv-u for 
unspecified parameter τ when 2 2

1 2σ σ= , and hence the LDPS model 
may be appropriate for a square ordinal table if there is an underlying 
bivariate normal distribution with equal marginal variances. Tomizawa 
[4] pointed out that the ELDPS model may be appropriate even if 
marginal variances are unequal.

When 2 2 2
1 2σ σ σ= = , the density function f(u,v)is formed by:

( ) ( ) ( )2 2

1 2 1 2, u v u vu v u vf u v ca a b b− +− +=

where
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Tahata et al. [5] proposed the NDS model defined by:
( ) ( ) ( )

2 2

1 2 1 2    1, , ; 1, ,i j i ji j i j
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Under the NDS model, ( )2
2 / i j

ij jip p α −= for i < j. Therefore the NDS 

model implies the LDPS model. Yamamoto et al. [1] proposed the RNDS 

model defined by:

( )2 2

   1, , ; 1, ,i j i j ij
ijp i r j rµα β γ+ += = … = …  

The RNDS model is the special case of a NDS model obtained by 
putting α2=1. Under the NDS and RNDS models, the cell probability 
pij has a form which is similar to bivariate normal density with equal 
marginal variances and with equal marginal means and variances, 
respectively.

Unrestricted Normal Distribution Type Symmetry 
Model

The joint bivariate normal density f(u,v)may be expressed as:

( ) 2 2
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For an r × r square table, we shall propose a model defined by:

( )2 2

1 2 1 2      1, , ; 1, , .i j i j ij
ijp i r j rµα α β β γ= = … = …

We shall refer to this model as the unrestricted normal distribution type 
symmetry (UNDS) model. We can see that the cell probability pij has a 
form similar to the normal density with unequal marginal means and 
marginal variances under this model. Therefore the UNDS model may 
be appropriate for an ordinal table if it is possible to assume that there 
is an underlying bivariate normal distribution which does not require 
both of the equal marginal means and equal marginal variances. Special 
cases of the UNDS model obtained, by setting α1=α2 is the NDS model, 
and by setting α1=α2 and β1=β2 is the RNDS model. Hence the proposed 
UNDS model is extension of both the NDS and RNDS models. Under 
the UNDS model, we see:
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Therefore the UNDS model implies the ELDPS model.
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Figure 1 represents relationships among the models. Note that 
M2→M1 indicates that model M2 implies model M1.

Decomposition of Model
Let X1 and X2 denote the row and column variables of a table, 

respectively. Consider the marginal mean and variance equality (MV) 
model defined by:

2 2
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= −∑∑ . This indicates that E(X1)=E(X2) and Var (X1) = Var (X2). 

This model is also expressed as E(X1)=E(X2) and ( ) ( )2 2
1 2E X E X=

Then, we obtain:

Theorem 1

The RNDS model holds if and only if both the UNDS and MV 
models hold.

Proof. If the RNDS model holds, then the UNDS and MV models 
hold. Assuming that both the UNDS and MV models hold, we shall 
show that the RNDS model holds. Let { }* *

ijp p=  denote the cell 
probabilities which satisfy both the UNDS and MV models. Since the 
UNDS model holds, we see:
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1 2µ µ=  by µ0 and ( )*2 *2
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arbitrary cell probability p={pij} satisfying:
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From eqns. (1), (2) and (3), we see:
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From eqns. (4) we obtain:
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where K (a,b) is the Kullback-Leibler information between {aij} and 
{bij}, defined by:
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Note that K(a,b) ≥ 0 and the equality holds when only aij=bij, for 
i,j=1,…,r. Since {πij} is fixed, we see ( ) ( )*min , ,

p
K p K pπ π=  and then 

{ }*
ijp  uniquely minimizes K (p,π) [11].

Let { }** **
ijp p=  with ** *

ij jip p=  for 1 ≤ i,j ≤ r. Then, noting that 

πij=πji, we obtain ( ) ( )**min , ,
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K p K pπ π=  and then { }**
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minimizes K(p,π). Therefore, we see
* **
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i,j=1,…,r. Then we see:
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From eqns. (5) and (6), we obtain:
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which leads to α1=α2. From eqns. (5) and (7), we obtain:

( )1

2

1     , 1, ,
i j

i j rβ
β

−
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which leads to β1=β2. Therefore the RNDS model holds. The proof is 
completed.

Goodness of Fit Test
Assume that multinomial distribution applies to the r × r table. 

The maximum likelihood estimates of expected frequencies under each 
model can be obtained by using Newton-Raphson method to the log-
likelihood equations or by using iterative procedure, for example, the 
general iterative procedure for log-linear model of Darroch and Ratcliff 
[11].

Let nij denote the observed frequency in the (i,j)th cell of the table. 

RNDS NDS

LDPS

UNDS

ELDPS

Note:  M2 → M1 indicates that model M2 implies model M1.
Figure 1: Relationships among models.
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The likelihood ratio chi-square statistic for testing the goodness of fit of 
a model symbolized by M is:

( )2

1 1

2 log
ˆ

r r
ij

ij
i j ij

n
G M n

m= =

 
=   

 
∑∑

where ˆ ijm  is the maximum likelihood estimate of expected frequency 
mij under model M. The number of degrees of freedom (df) for the 
UNDS model is r2-6. Also the numbers of df for the RNDS, NDS, LDPS, 
ELDPS and MV models are r2 - 4, r2 - 5, (r2 - r - 2)/2, (r2 - r - 4)/2 and 2, 
respectively.

Consider two nested models, say M1 and M2, such that model M2 is 
a special case of model M1, so when M2 holds, necessarily M1 also holds. 
For example, M2 is the UNDS model and M1 is ELDPS model. Let k1 

and k2 denote the numbers of df for models M1 and M2, respectively. 
Note that k1 < k2 and G2 (M1) ≤ G2 (M2). For conditional goodness-of-
fit test of model M2 holds assuming that model M1 holds, we can use 
the likelihood ratio statistic G2 (M2|M1), where G2 (M2|M1)=G2 (M2) 
- G2 (M1). Under the model M1, this test statistic has an asymptotic 
chisquare distribution with k2 - k1 df.

Partition of Test Statistics
We obtain:

Theorem 2

The following asymptotic equivalence holds:

( ) ( ) ( )2 2 2G RNDS G UNDS G MV+

The number of df for the RNDS model equals the sum of the numbers 
of df for the UNDS and MV models.

Proof. The UNDS model may be expressed in a log-linear form:
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where “t” denotes the transpose. Then the UNDS model is expressed as:
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and ⊗ denotes the Kronecker product. Note that the model matrix 
X is full column rank and the rank of X is 6. In a similar manner to 
Haber [12], we denote the linear space spanned by the columns of 
the matrix X by S(X) with the dimension 6. Let U be an r2 × d1 full 
column rank matrix, where d1=r2-6, such that the linear space spanned 
by the columns of U, S(U), is orthogonal compliment of S(X). Thus, 

1 ,6
t

dU X O= which is the d1 × 6 zero matrix. Therefore the UNDS 
model is expressed as:

( )
11 0dh p =

where ( )1 logth p U p= and 0s is the s × 1 zero vector. The MV model 
may be expressed as:

( )
22 0dh p =

where h2(p)=Wp and d2= 2 and W is the d2 × r2 matrix with:

( )3 4 1 2,tW X X X X= − −

Therefore the column vectors of Wt belong to space S(X), namely, 
S(Wt) ⊂ S(X). Hence 

2 1, .d dWU O=  From Theorem 1, the RNDS model 
is expressed as:
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33 0dh p =

where ( ) ( ) ( )( )3 1 2,
tt th p h p h p=  and d3=d1 + d2=r2 – 4. Note that hs (p) 

is the vector of order ds × 1, s=1,2,3, and d1,d2 and d3 are the numbers 
of df for testing goodness-of-fit of the UNDS, MV and RNDS models, 
respectively.

Let Hs(p) denote the ds × r2 matrix of partial derivatives of hs(p) with 
respect to pt, i.e., 
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Let ( ) ( ) tp diag p ppΣ = − where diag(p) denotes a diagonal matrix 

with ith component of p as i th diagonal component. Then we see:
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From eqns. (8) and (9), we obtain 𝛥3=𝛥1 + 𝛥2. Under ( ) 0
ss dh p = , the 

Wald statistic ( )ˆs sW n p= ∆ , where ˆ /ijp n n=  and ijn n= ΣΣ , has 
asymptotically the chi-squared distribution with ds df, s = 1,2,3. From 
𝛥3=𝛥1 + 𝛥2, W3=W1 + W2. Since the Wald statistic is asymptotically 
equivalent to the likelihood ratio statistic [8,13], we obtain Theorem 2. 
The proof is completed.

An Example
The data in Table 1 taken from Tomizawa, Miyamoto and Iwamoto 

[14] are the decayed teeth data of 363 women aged 18-39, for patients 
visiting a dental clinic in Sapporo City, Japan, from 2001 to 2005. Table 
2 gives the values of likelihood ratio chi-square statistic G2 for models 

Upper
Lower (1) 0-4 (2) 5-8 (3) 9+ Total  

(1)	 0-4 97 62 15 174
(95.12) (62.12) (16.76)

(2)	 5-8 20 63 75 158
(23.40) (63.48) (71.12)

(3)	 9+ 2 6 23 31
(0.48) (5.40) (25.12)

Total 119 131 113 363

Note: The parenthesized values are the maximum likelihood estimates of expected 
frequencies under the UNDS model.

Table 1: Numbers of decayed teeth data of 363 women aged 18-39, for patients 
visiting a dental clinic in Sapporo City, Japan, from 2001 to 2005; from Tomizawa, 
Miyamoto and Iwamoto [14].
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applied to the data in Table 1.

From Table 2, the LDPS, NDS, RNDS and MV models fit the data 
in Table 1 poorly. Whereas, the ELDPS and UNDS models fit the data 
well. In addition, the UNDS model is preferable to the ELDPS model 
for the data because the conditional goodness-of-fit test of the UNDS 
model assuming the ELDPS model is not significant at the 0.05 level 
with the difference between the G2 values for the UNDS model and the 
ELDPS model is 1.22 with 3 − 1=2 df.

From Theorem 1, it is inferred that the poor fit of the RNDS model 
applied to the data in Table 1 is caused by the influence of lack of 
structure of the MV model which fits the data poor rather than the 
UNDS model. Thus it is seen that for these data the distribution of the 
numbers of lower and upper decayed teeth may be similar to a bivariate 
normal distribution which has unequal marginal means and variances. 

So the extended parameters a1(or a2) and β1(or β2) in the UNDS model 
may improve the fit better than the NDS and RNDS models.

Simulation Studies
The UNDS model may be appropriate for an ordinal square 

table when it is assumed that there is an underlying bivariate normal 
distribution even if the marginal means and variances are unequal, 
respectively. Now we shall consider the simulation studies based on the 
bivariate normal distribution.

Consider the random vector Z=(Z1,Z2) which is distributed 
as a bivariate normal distribution with means E(Z1)=µ1, E(Z2)=µ2,  
variances ( ) 2

1 1Var Z σ= , ( ) 2
2 2Var Z σ= , and correlation Corr(Z1,Z2)=p. 

Suppose that there is an underlying bivariate normal distribution with 
some conditions and then a table is formed using cut points for each 

Applied models Degrees of freedom G2

LDPS 2 11.05*
ELDPS 1 2.66

NDS 4 24.59*
RNDS 5 117.24*
UNDS† 3 3.88

MV 2 89.48*

Note: † means the proposed model.
*means significant at the 0.05 level.

Table 2: Values of likelihood ratio statistic G2 for models applied to the data in Table 1.

(a) µ2=µ1 and 2 2
2 1σ σ=

ρ Hypothesis
LDPS ELDPS NDS RNDS UNDS UNDS|ELDPS

0.1 948928 931860 945178 943146 945175 888023
0.3 948965 942864 926804 927213 924523 870414
0.5 948412 946063 851006 854888 842392 767789
0.7 944747 942699 604754 619468 583373 470966

(b) µ2=µ1 + 0.2 and 2 2
2 1σ σ=

ρ Hypothesis
LDPS ELDPS NDS RNDS UNDS UNDS|ELDPS

0.1 944702 942433 941646 146490 938958 886568
0.3 941935 939529 918831 68252 917840 860676
0.5 937577 935074 842646 11344 833718 758797
0.7 932473 929557 597827 113 576790 472584

(c) µ2=µ1 + 0.2 and 
2 2
2 11.2σ σ=

ρ Hypothesis
LDPS ELDPS NDS RNDS UNDS UNDS|ELDPS

0.1 757728 942470 814884 146362 940574 889008
0.3 746636 939991 778780 68213 914640 856961
0.5 725336 935558 663082 13282 822359 744716
0.7 678794 927783 383706 223 541963 434724

(d) µ2=µ1 + 0.4 and 
2 2
2 11.4σ σ=

ρ Hypothesis
LDPS ELDPS NDS RNDS UNDS UNDS|ELDPS

0.1 281282 928175 387073 4 925600 867818
0.3 262502 916741 351107 0 891480 837369
0.5 231949 899227 258610 0 782062 706041
0.7 192275 884906 112828 0 492457 407308

Table 3: The frequencies of acceptance (at the 0.05 significance level) of goodnessof-fit test for the LDPS, ELDPS, NDS, RNDS and UNDS models and conditional 
goodness of fit test for the UNDS model assuming the ELDPS model holds (and the ELDPS model is accepted), denoted UNDS|ELDPS, per 1000000 times for 4 × 4 tables 
of sample size 1000 and correlation ρ on some condition.
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variable at µ1, µ1 ± 0.7σ1. Table 3 gives the frequencies of acceptance (at 
the 0.05 significance level) of goodness-of-fit test for the LDPS, ELDPS, 
NDS, RNDS and UNDS models and conditional goodness-of-fit test 
for the UNDS model assuming the ELDPS model holds (when the 
ELDPS model is accepted) per 1000000 times for 4 × 4 tables of sample 
size 1000 on some conditions given in Table 3. From Table 3a, when 
the marginal means and variances are respectively equal, each model 
tends to fit well. From Table 3b, when the marginal means are unequal, 
each model except for the RNDS model tends to fit well. From Table 
3d, when the marginal means and marginal variances are respectively 
unequal, the UNDS and ELDPS models tend to fit well. From Tables 
3a, 3c and 3d, it can be seen that, as the difference of marginal means 
and marginal variances increases simultaneously, the frequencies of 
acceptance for the LDPS, NDS and RNDS models decrease, whereas 
those for the UNDS and ELDPS models do not decrease so much.

From the frequencies of acceptance of conditional goodness-of-fit 
test for the UNDS model assuming the ELDPS model holds, we see that 
the UNDS model would be preferable to the ELDPS model when the ρ 
is small (especially when it is smaller than 0.5).

Concluding Remarks
We have proposed the UNDS model which indicates a cell 

probability having similar form as a bivariate normal density. The 
proposed UNDS model may be appropriate for an ordinal square table 
assuming that there is an underlying bivariate normal distribution even 
if the marginal means and variances are respectively unequal. We have 
also shown that with simulation studies.

We have obtained the theorem that the RNDS model holds if and 
only if both the UNDS and MV models hold. For analysing the data, 
Theorem 1 may be useful for seeing the reason of the poor fit when the 
RNDS model fits the data poorly (see section 7).
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