Unusual Yellow Staining of the Knee Articular Bones

Antonios T* and Willis-Owen CA
Queen Elizabeth Hospital, London, UK

Abstract
We report on the unusual finding of yellow-stained bone during an elective knee arthroscopy for a 52 year old female complaining of worsening pain on mobility. The magnetic resonance scan (MRI) confirmed medial and lateral meniscal tears. During the procedure, marked dark yellow stains were seen in the tibia, femur and the patella bones. Partial meniscectomies were performed in the usual fashion. Retrospective history from the patient confirmed that she was subjected to Tetracycline antibiotics use for a considerable time during her childhood. We believe this striking finding is directly related to childhood use of tetracycline and that her skeleton is permanently yellow-stained.

Keywords: Knee arthroscopy; Tibia; Femur; Patella

Introduction
Tetracycline-related discoloration of teeth is well reported in the literature with an incidence rate of up to 6% [1,2]. However, fewer papers have reported upon discoloration affecting bony skeleton and soft tissues [3,4]. Tetracycline was introduced in the late 1940s as an antibiotic and anti-inflammatory for treating common infections [2,5]. Due to its effectiveness, it was widely prescribed to children suffering from common infections. During the 1950s and 1960s, few reports started to appear in the literature linking tetracycline and its derivatives to discoloration of teeth [6,7].

The mechanism is not fully understood, but it appears that tetracycline incorporates into calcifying tissues such as teeth and bones by chelating calcium ions [8-12]. The discoloration can vary from yellow to grey or dark brown [2,3,10]. The incidence of tetracycline-related discolouration in bone and cartilage is not well quantified, as the majority of literature-reported findings were from incidental findings in surgical operations [4]. Bone staining in cranium, shoulder, hand, pelvic girdle, hip and femur has been reported in the literature [13-15]. Nevertheless, to the authors’ knowledge there are no reported cases of tetracycline-related bone staining in the knee identified during arthroscopy procedures.

Case Presentation
A 52 year-old female presented to the outpatient orthopaedic clinic with worsening left knee pain, and swelling on minimal activities. She used to do considerable amount of running and cycling in the past. Twenty fours years prior to this, she underwent a left knee patella tendon anterior cruciate ligament (ACL) reconstruction for an injury seven years prior. She fully recovered and went back to running and cycling. After recently moving to the UK, she developed left knee pain and swelling. Her exercise tolerance had considerably reduced with her range of motion was from 0° to 140° limited by the effusion and with frank arthritis within the knee in the patellofemoral compartment and in small patches in the medial and lateral compartments.

The patient underwent knee arthroscopy. She had moderate patellofemoral and medial compartment arthritis with degenerate medial and lateral meniscal tears which were debrided. Her cruciate ligament graft was intact. She had “neon yellow” staining of the exposed bone in all of the arthritic areas (Figures 1 and 2). Other soft tissue structures were not affected. Care was taken to ensure and check colour calibration and white balancing of the arthroscopic equipment to ensure that the colour change was genuine.

Postoperatively, she was reviewed in the orthopaedic clinic at 6 weeks. Her pain subsided and she later returned to light exercise. She confirmed that she was subjected to long-term tetracycline antibiotic

Keywords: Knee arthroscopy; Tibia; Femur; Patella

Introduction
Tetracycline-related discoloration of teeth is well reported in the literature with an incidence rate of up to 6% [1,2]. However, fewer papers have reported upon discoloration affecting bony skeleton and soft tissues [3,4]. Tetracycline was introduced in the late 1940s as an antibiotic and anti-inflammatory for treating common infections [2,5]. Due to its effectiveness, it was widely prescribed to children suffering from common infections. During the 1950s and 1960s, few reports started to appear in the literature linking tetracycline and its derivatives to discoloration of teeth [6,7].

The mechanism is not fully understood, but it appears that tetracycline incorporates into calcifying tissues such as teeth and bones by chelating calcium ions [8-12]. The discoloration can vary from yellow to grey or dark brown [2,3,10]. The incidence of tetracycline-related discolouration in bone and cartilage is not well quantified, as the majority of literature-reported findings were from incidental findings in surgical operations [4]. Bone staining in cranium, shoulder, hand, pelvic girdle, hip and femur has been reported in the literature [13-15]. Nevertheless, to the authors’ knowledge there are no reported cases of tetracycline-related bone staining in the knee identified during arthroscopy procedures.

Case Presentation
A 52 year-old female presented to the outpatient orthopaedic clinic with worsening left knee pain, and swelling on minimal activities. She used to do considerable amount of running and cycling in the past. Twenty fours years prior to this, she underwent a left knee patella tendon anterior cruciate ligament (ACL) reconstruction for an injury seven years prior. She fully recovered and went back to running and cycling. After recently moving to the UK, she developed left knee pain and swelling. Her exercise tolerance had considerably reduced with her range of motion was from 0° to 140° limited by the effusion and with frank arthritis within the knee in the patellofemoral compartment and in small patches in the medial and lateral compartments.

The patient underwent knee arthroscopy. She had moderate patellofemoral and medial compartment arthritis with degenerate medial and lateral meniscal tears which were debrided. Her cruciate ligament graft was intact. She had “neon yellow” staining of the exposed bone in all of the arthritic areas (Figures 1 and 2). Other soft tissue structures were not affected. Care was taken to ensure and check colour calibration and white balancing of the arthroscopic equipment to ensure that the colour change was genuine.

Postoperatively, she was reviewed in the orthopaedic clinic at 6 weeks. Her pain subsided and she later returned to light exercise. She confirmed that she was subjected to long-term tetracycline antibiotic
use during her childhood. She provided consent for using data from her case for publication.

Discussion

Several studies have discussed the mechanism of bone discolouration secondary to tetracycline use [2-4]. Tetracycline incorporates into calcifying tissues through chelating calcium ions in osteogenic parts of the bone. It irreversibly binds to hydroxypatite forming a tetracycline-calcium phosphate complex and deposited during osteoid mineralization [8-12]. Higher rates of mineralization lead to more tetracycline deposition in tissues [8-12].

Shining ultraviolet light over a tetracycline stained bone produces yellow-fluorescence [16-19]. This made it possible to use it in research as marker of rate of bone mineralization [2,4]. Tetracycline components are given to subjects and bone biopsies at different intervals measure the difference in different linear fluorescent labels under microscopy [16-19].

Few incidental findings of tetracycline bone-related discolouration have been cited in the literature [3,4]. However, there were no reports of any structural difference or damages to bone quality post fracture fixation or joint arthroplasty [13-15]. One paper has reported an incidental finding of tetracycline-related discolouration during a routine cemented knee arthroplasty [14]. The authors reported no difference subsequent postoperative fixation after one year follow up.

Conclusion

The vast majority of literature on tetracycline related discolouration is case reports. With the increasing number of orthopaedic procedures, more incidental findings of similar cases will occur. Detailed history taking and consideration of such a diagnosis during surgery would avoid unnecessary tests and bewilderment for the patient and surgeon respectively!

References