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Introduction
In about 2000 years ago, Aretaeus the capudocian, the Greek 

physician, described diabetes as a condition with a “melting down of the 
flesh and limb into urine” [1]. With reference to type 1 diabetes, this is 
remarkably amazingly accurate observation. In type 2 diabetes reports 
have been inconsistent, that protein metabolism has been reported 
to be both unaffected and affected [2,3]. In 1993,” insulin resistance 
of protein metabolism”, was firstly introduced in patients with type 
2 diabetes [4,5]. It is defined as the defect in amino acid metabolism 
and suppression of protein breakdown which is correlated with insulin 
resistance [6]. Since then many studies have shown a negative nitrogen 
balance and loss of nitrogen from most organs in patients with type 2 
diabetes [7,8]. Protein malnutrition is associated with an increased level 
of oxidative stress [9]. Protein restriction in rats with type 2 diabetes, 
cause an accelerated oxidative stress [10,11]. Children with kwashiorkor 
have a higher level of lipid preoxidation [12-14]. Consistently protein 
malnutrition in intra uterine growth retardation pregnancies is the 
leading cause of oxidative stress in these patients [15,16]. Insulin 
resistance of protein metabolism could be impaired as one of the causes 
of protein malnutriton [17]. It often precedes the onset of type 2 diabetes 
by many years. Studies have shown the role of insulin resistance in the 
induction of reactive oxygen species (ROS) and oxidative stress in type 
2 diabetes [17-19]. Oxidative stress is a disturbance in the pro-oxidant, 
anti-oxidant balance in favor of the former, which leads to the potential 
damage [20]. Superoxide dismutases (SOD) are a class of enzymes 
that catalyze the dismutation of superoxide into oxygen and hydrogen 
peroxide. SOD levels are increased in the situations of oxidative stress 
[21]. Malondialdehyde (MDA) is the organic compound considered as 
a reactive species which occurs naturally and is a marker for oxidative 
stress [22]. Superoxide results into macromolecules alteration such as 
polyunsaturated fatty acids in membrane lipids. This results into the 
generation of MDA [22]. Both MDA and SOD are increased in patients 
with type 2 diabetes, due to increased oxidative stress [23].

Here we aimed to study the correlation of serum urea as an indicator 

of protein metabolism with MDA and SOD as markers of oxidative 
stress in patients with type 2 diabetes.

Methods
We performed a cross sectional study on 151 patients with type 2 

diabetes from the diabetes clinic of Vali Asr hospital affiliated with Tehran 
University of Medical Science plus 45controls. Diabetes was diagnosed 
according to the criteria of the American Diabetes Association which 
is based on glycemia [24]. Exclusion criteria were smoking, pregnancy, 
creatinine >1.5 mg/dl or GFR< 70 cc/min, glomerulonephritis, thyroid 
disorders, acute infections, stroke, diabetic ketoacidosis, non-ketonic 
hyperosmolar diabetes, congestive heart failure, use of antioxidant and 
hospital admission in recent 6 months. None of the participants were 
on hormone replacement therapy. Controls were healthy volunteers 
from the patients’ concomitants or hospital staffs. Healthy controls 
were selected from those without any known disease including type 
2 diabetes, hyperlipidemia, ischemic heart disease and malignancy. 
Demographic and anthropometric data including age, sex, duration 
of diabetes, height and weight in light clothing and blood pressure 
in sitting position were recorded. Blood pressure was re measured 
twice after 5 minutes average. The body mass index (BMI; Kg/m2) was 
calculated according to the Quetelet formula.

 Diet was almost similar in composition in all the studied groups. 
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Patients and controls were instructed to consume standardized meals 
that contained 50% carbohydrates, 30% fat and 20% protein, for two 
weeks before the beginning of the study. All the patients were consulted 
by a nutritionist during the study. The glomerular filtration rate (GFR) 
was calculated using the Cockcroft-Gault formula [25]. All participants 
gave written informed consent before participation. The research was 
carried out according to the principles of the declaration of Helsinki; 
the local ethics review committee of Tehran University of Medical 
Science approved the study protocol. 

Blood Samples
Blood samples were collected after 12 hours of fasting were 

centrifuged and kept at -70º C until analysis. Glucose measurements 
(intra-assay coefficient of variants [CV] 2.1%, inter-assay CV 2.6%) 
were carried out using the glucose oxidase method. Cholesterol, high 
density lipoprotein cholesterol (HDL-C), low density lipoprotein 
cholesterol (LDL-C) and triglycerides were determined using direct 
enzymatic methods (Parsazmun, Karaj, Iran). Urea was measured using 
colorimetric assay (Parsazmoon, Karaj, Iran). Creatinine was measured 
using calibrated Jaffe method (Parsazmoon, Karaj, Iran). Patients were 
instructed in the collection of timed 24-hour urine for measurement 
of urinary albumin excretion and were told to return on the morning 
after the end of the urine collection. Women were not examined during 
menstruation. All specimens were confirmed to be sterile by culture. 
Urinary albumin was measured by immunoturbidometry (DAKO, 
Denmark) in duplicate and the average of the 2 measurements was 
used for the analysis. Serum EC-SOD was assayed using a 2-step ELISA 
with a monoclonal antibody using the Cayman Chemical SOD assay 
kit (Cayman Chemicals, Ann Arbor,MI, USA). One unit of SOD is 
defined as the amount of enzyme needed to exhibit 50% dismutation 
of the superoxide radical. Serum MDA levels were measured using the 
colorimetric method. After reaction of thiobarbituric acid with MDA, 
the reaction product was extracted in butanol. Separation of the organic 
phase was facilitated by centrifugation at 3,000 rpm for 10 minutes and 
its absorbance was determined spectrometrically at 530 nm (Cayman 
Chemicals, Ann Arbor, MI, USA). 

Statistical Analysis
The statistical package SPSS 17 for windows (Chicago, Illinois, 

USA), was used for analysis. Variables distributed normally are 
presented as mean and standard error of mean (SEM). Amount of 
albuminuria was log-transformed and employed for further analysis. 
Independent sample test was used to compare variables between 
patients and controls as well as between men and women. Pearson’s 
correlation test was employed to test the correlation of serum urea with 
other studied variables. Partial correlation was employed to test the 
correlation of urea with MDA and SOD after multiple adjustments for 
GFR, HbA1C, albuminuria and duration of diabetes.

Results
Characteristics of the patients and controls are presented in Table 1. 

The frequency of insulin therapy was (30/151; 20%) and the frequency 
of statin therapy was (70/151; 46%) in patients with type 2 diabetes. 
Patients had a higher serum urea, FBS, HbA1C, triglyceride, cholesterol, 
LDL, SOD, MDA and a lower HDL than controls (Table 1).We then 
stratified the studied groups according to gender. Diabetic men had a 
lower HDL and a higher albuminuria compared to diabetic women. 
There were no difference in any of the studied variables between men 
and women in control group (Table 2). 

Serum urea levels were negatively correlated with MDA (r= -0.70, 
p<0.01) and SOD (r= -0.60, p<0.01) in men with type 2 diabetes (Figure 
1), when there was not such a significant correlation among women and 
controls (Table 3). This was significant after multiple adjustments for 
HbA1C, GFR, albuminuria and duration of diabetes (MDA: r= -0.72, 
p<0.001; SOD: r= -0.59; p<0.001) using partial correlation. Serum urea 
levels were not correlated with any of the studied variables in men and 
women in the controls group (Table 3).

Discussion
Oxidative stress is the hallmark of type 2 diabetes. It precedes 

diabetes years before the diagnosis of diabetes and is also the culprit 
mechanism of disease such as metabolic syndrome or insulin 
resistance. Urea is one of the main indicators of protein metabolism 
and nitrogen balance in humans [26], which is recently found to have 

Patients with type 
2 diabetes (n=151)

Healthy con-
trols (n=45)

P value

Age (yrs) 58.9±0.7 59.0±1.0 NS
Female (n, %) 80 (52%) 40 (44%) NS
BMI(kg/m2) 27.04±0.4 27.2±0.4 NS
Systolic blood pressure (mmHg) 143.5±6.7 125.2±1.5 NS
Diastolic blood pressure 
(mmHg) 84.3±0.8 78.4±1.2 <0.001

Urea (mg/dl) 50.2±1.9 27.5±1.3 <0.001
Fasting Blood Sugar (mg/dl) 173.7±5.0 88.6±1.0 <0.001
HbA1C (%) 8.8±0.2 4.8±0.1 <0.001
Triglyceride (mg/dl) 191.8±6.4 105.7±5.5 <0.001
Cholesterol (mg/dl) 194.4±4.1 205.4±3.4 <0.001
LDL-C (mg/dl) 88.8±2.2 113.2±1.7 <0.001
HDL-C (mg/dl) 31.7±0.5 52.0±1.6 <0.001
MDA (µmol/L) 3.67±0.09 2.47±0.13 <0.001
SOD (U/ml) 84.1±1.6 70.4±0.9 <0.001
GFR (ml/min) 73.0±1.9 89.2±2.7 <0.001
Log-albuminuria (mg/day) 2.006±0.079 - -

Variables are expressed as mean ± standard error of mean (SEM). The column of 
“P value” is presented when comparing patients with type 2 diabetes and controls.

Table 1: The primary characteristics of patients with type 2 diabetes and controls.

Patients with type 2 diabetes Healthy Controls
Men (n=71) Women (n=80) Men (n=20) Women (n=25)

Age (yrs) 60.4±1.04 59.4±0.8 59.6±1.72 58.5±1.25
Urea (mg/dl) 50.3±2.3 50.1±2.8 30.2±2.7 26.7±1.4
HbA1C (%) 8.9±0.2 8.7±0.1 4.8±0.1 4.9±0.1
Fasting Blood 
Sugar (mg/dl)

174.2±6.6 173.2±7.4 89.2±1.8 88.2±1.2

Triglyceride 
(mg/dl)

188.3±8.0 194.8±9.7 101.5±7.3 109.0±8.1

Cholesterol 
(mg/dl)

195.1±6.0 193.7±5.5 204.3±4.5 206.3±4.9

LDL-C (mg/dl) 89.9±3.1 87.8±3.2 117.3±1.7 109.9±2.6
HDL-C (mg/dl) 30.7±0.6* 32.7±0.7 49.0±2.1 54.3±2.3
MDA (µmol/L) 3.8±0.09 3.6±0.12 2.52±0.19 2.48±0.17
SOD (U/ml) 88.7±2.2 79.9±3.9 71.3±1.9 69.5±2.01
GFR (ml/min) 75.8±2.4 70.6±2.6 93.3±4.4 85.9±3.4
Log-albumin-
uria (mg/day)

2.24 ±0.109** 1.87±0.109 - -

Variables are expressed as mean ± standard error of mean (SEM). *p<0.05; ** 
p<0.01; ***p<0.001, when comparing men and women in diabetes and control 
groups

Table 2: Characteristics of the patients in the studied groups stratified according 
to gender.
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some association with the markers of oxidative stress [27,28]. We also 
performed another study and consistent with the current findings, 
showed that urea is negatively correlated with the makers of metabolic 
syndrome such as LCAT enzyme (unpublished paper). This is the first 
report demonstrating the negative correlation of serum urea levels with 
markers of oxidative stress including MDA and SOD in men with type 
2 diabetes. This was significant after multiple adjustments for HbA1c, 
GFR, albuminuria and duration of diabetes. 

Mitochondria, described as a cellular power plants, are the site 
of reaction of oxidative phosphorylation in electron transport chain, 
which results in the formation of ATP [29,30]. In the situation of 
hyperglycemia the voltage across the mitochondrial membrane 
increases above the critical threshold for superoxide production. 
This will induce the production of reactive oxygen species [31]. Urea 
genesis is a biochemical cycle in the liver initiated in the mitochondria 
and completed in the cytosole [32]. The effect of mitochondirial 
hyperactivity with glucose oxidation on hepatic urea genesis has not 
been examined. Amino acids ingested from the foods which are not 
used for the synthesis of proteins are oxidized [33]. The oxidation 
pathway starts with transamination, the removal of the amino group 
by a transaminase [33]. All amino nitrogen from amino acid that 
undergoes transamination, are concentrated in L-Glutamate [32,33]. 
This is important because L-Glutamate is the only amino acid that 
undergoes oxidative deamination (release of ammonia) [33]. Release of 
ammonia from glutamate is then catalyzed by the hepatic L-Glutamate 
dehydrogenase (GDH), which is located in the mitochondria of the liver 
tissue [33]. GDH is allosterically inhibited by ATP, GTP and NADH and 
is activated by ADP [32,34]. Under the situation of caloric restriction 
and low blood glucose, the activity of GDH is raised in order to increase 
the amount of energy [33,35]. In diabetic cells with high glucose inside, 
there is more glucose being oxidized which in effect pushes more 

electron donors into electron transport chain [36]. This results into 
the production of free radical hydrogen peroxide, superoxide and a 
decreased NAD/NADH ratio [36]. Under normal conditions, ROS 
are cleared from the cell by the action of SOD, catalase, or glutathione 
peroxidase. The main damage to cells results from the ROS-induced 
alteration of macromolecules such as polyunsaturated fatty acids in 
membrane lipids, which results into the generation of MDA. Moreover 
SOD increases to protect cells against oxidative damage. Urea genesis 
decreases in hyperglycemia. This may explain the negative correlation 
between serum urea and markers of oxidative stress such as MDA, SOD 
in patients with type 2 diabetes (Figure 2). 

In consistent with our findings, Dasarathy and collaborators 
showed that intralipid infusion in patients with non alcoholic steato 
hepatitis (NASH) increases plasma glutathione levels. Because plasma 
glutathione is mostly derived from the liver, this increase is a result 
of elevated oxidative stress caused by higher fatty acid oxidation in 
subjects with NASH. Likewise, intralipid infusion decreased urea 
genesis in these patients. They concluded that increased level of hepatic 
β-oxidation is associated with a decreased level of ureagenesis [37]. 
Interestingly Anderson et al, showed that the mitochondria in the 
arterial tissue of type 2 diabetes show a sharply decreased capacity of 
glutamate metabolism compared to non diabetic subjects [38]. It is 
shown that there is a reduced mitochondrial protein metabolism in 
patients with type 2 diabetes [39,40]. 

Why the negative correlation between serum urea and markers of 
oxidative stress is only observed in men with type 2 diabetes? We do 
not have a definite answer to this question, but previous studies have 
postulated a number of theories. Chevalier et al. showed sex difference 
on protein anabolic actions of insulin which is significantly greater in 
men [41]. Consistently Gougeon et al. showed that the kinetics of whole 
body proteins is elevated in hyperglycemic men. There is an insulin 
resistance protein metabolism in diabetic men, when this would not 
happen in diabetic women [2,42]. Pereira et al. [43] reported the results 
from an extensive study which defined whole-body protein metabolism 
in patients with type 2 diabetes. The study was designed to evaluate the 
basal, postabsorptive and insulin-stimulated amino acid and glucose 
metabolism, using infusion of labeled leucine in patients with type 2 
diabetes and healthy controls. They showed that despite a similar basal 
whole-body leucine fluxes between patients and controls, total leucine 
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Figure 1: The correlation of Urea with A: SOD and B: MDA in men with type 2 diabetes.

SOD (U/ml) MDA (µmol/L)

Urea (mg/dl)

Women with type 2 diabetes -0.02 -0.01
Men with type 2 diabetes -0.60*** -0.70***
Women in control Group -0.03 -0.37

Men in control group 0.23 -0.05

*p<0.05; ** p<0.01

Table 3: Presenting the partial correlation coefficient (r) of serum urea with MDA 
and SOD in diabetic men, diabetic women, men and women in control group.
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flux and protein synthesis increased less in type 2 diabetic men, during 
the hyperinsulinemic, glucose and amino acid clamp. They concluded 
that hyperglycemic men have insulin resistance of protein metabolism 
[43]. Theoretically it could be concluded that protein metabolism and 
urea formation is more influenced in diabetic men. Likewise insulin 
resistance increase markers of oxidative stress. This may partially 
explain the correlation between serum urea with MDA and SOD, only 
in men with type 2 diabetes. Future prospective studies, using larger 
trials investigating male/female differences or a trial to ascertain the 
impact of statin treatment upon these inflammatory markers would 
help to bolster the potential causation role of these inflammatory 
markers as culprits in the atherosclerotic process.

The principal limitation of the present study is its cross sectional 
nature. We did not measure the nitrogen balance; however diet was 

almost similar in composition in all the studied groups. Patients and 
controls were instructed to consume standardized meals that contained 
50% carbohydrates, 30% fat and 20% protein, for two weeks before the 
beginning of the study. All the patients were consulted by a nutritionist 
during the study. On the other hand we took advantage of a relatively 
large sample size and close similarity between groups in most of the 
potentially confounding variables. In conclusion we showed the 
negative correlation between markers of oxidative stress and serum 
urea levels in men with type 2 diabetes. Though we cannot show the 
direction of causality, this finding paves the way for important future 
works aimed at determining the role of protein metabolism on markers 
of oxidative stress in patients with type 2 diabetes. 
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