Use of LAB to Control Urogenital Infections

Mittu B1, Kaur B and Balgir PP

Department of Biotechnology, Punjabi University, Patiala, India

*Corresponding author: Mittu B, Department of Biotechnology, Punjabi University, Patiala, India, E-mail: bharti9mittu@yahoo.com

Received date: November 3, 2015; Published date: January 16, 2016

Copyright: © 2016 Mittu, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

A urinary tract infection (UTI) is an infection that affects part of the urinary tract. When it affects the lower urinary tract, it is known as a simple cystitis (a bladder infection) and when it affects the upper urinary tract, it is known as pyelonephritis (a kidney infection). The indigenous microbiota plays an important role in protecting the host from colonization of invading pathogens. Lactobacillus is the predominant genus in the vaginal [1] and endocervical microbial communities [2] and is present at concentrations of 107 to 108 CFU/ml of vaginal fluid in healthy postmenopausal/premenopausal women [3].

There is an emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. L. jensenii and L. gasseri are two of the most common species present, as determined by culture-independent techniques [4]. Relationship between LAB and vaginal pathogen have been studied which indicates that antibiotic treatment should not kill healthy LAB to preserve healthy vagina [4]. Earlier, Raiz and others (2010) isolated 72 strains from yogurt and fecal materials of human, chick, parrot and cat. Only two isolates namely L. fermentum and L. acidophilus were found to produce bacteriocins having antimicrobial potential against cephalosporin resistant E. coli. In a clinical trial performed using capsules containing L. fermentum RC-14 and L. rhamnosus GR-1, Gil et al. (2010) have proven their effectiveness for the treatment of patients with vulvovaginal candidiasis. Recently, L. fermentum was isolated from human milk and its bacteriocin has been assessed for preventing urinary tract infections [18-23]. Probiotics recommended for eradication of common human UTI vaginal pathogens are enlisted in Table A [24-26].

Causal Organism	Disease	Symptoms	Recommended Probiotics	References
Candida albicans | Vulvovaginal candidiasis | Irritation and soreness of the vulva, a thick, white vaginal discharge that doesn't usually smell. | L. pentosus TV35b | [19] |
Enterococcus faecalis | UTI | Blood in urine, pyelonephritis | L. salivarius subsp. salivarius CRL 1328 | [10] |
Enterococcus faecium | UTI | Normal commensals in human vagina, but if exceeds in counts can cause disease. | L. salivarius subsp. salivarius CRL 1328 | [11] |
Escherichia Coli | UTI cystitis | Pain or burning with urination, lower abdominal pain or pressure, and/or the need to urinate frequently; cloudy darker or bloody urine | L. acidophilus CRL 1259, L. crispatus 21L07 | [24,25] |
Escherichia Coli | UTI cystitis | Pain or burning with urination, lower abdominal pain or pressure, and/or the need to urinate frequently; cloudy darker or bloody urine | L. acidophilus CRL 1259, L. crispatus 21L07 | [24,25] |

| | | | L. jensenii 5L08 | [17] |

Causal Organism	**Disease**	**Symptoms**	**Recommended Probiotics**	**References**
Enterococcus faecalis | UTI | Blood in urine, pyelonephritis | L. salivarius subsp. salivarius CRL 1328 | [10] |
Enterococcus faecium | UTI | Normal commensals in human vagina, but if exceeds in counts can cause disease. | L. salivarius subsp. salivarius CRL 1328 | [11] |
Escherichia Coli | UTI cystitis | Pain or burning with urination, lower abdominal pain or pressure, and/or the need to urinate frequently; cloudy darker or bloody urine | L. acidophilus CRL 1259, L. crispatus 21L07 | [24,25] |
Escherichia Coli | UTI cystitis | Pain or burning with urination, lower abdominal pain or pressure, and/or the need to urinate frequently; cloudy darker or bloody urine | L. acidophilus CRL 1259, L. crispatus 21L07 | [24,25] |

| | | | L. jensenii 5L08 | [17] |
Table A: Common Opportunistic Pathogens of Human Urogenital System and their control by probiotic LAB.

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Disease</th>
<th>Control by LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella pneumonia</td>
<td>UTI</td>
<td>L. salivarius subsp. salivarius CRL 1326</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>Gonorrhea</td>
<td>L. jensenii ATCC 25258, L. gasseri ATCC 33323</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Burning sensation during urination, back pain, abdominal pain</td>
<td>L. gasseri TL03C, L. acidophilus TL099, L. delbrueckii TL069</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Toxic shock syndrome</td>
<td>L. paracasei CRL 1289</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>UTI</td>
<td>L. bulgaricus</td>
</tr>
</tbody>
</table>

References:

