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Introduction
Infectious diseases are caused by pathogenic micro-organisms, 

such as bacteria, viruses, parasites or fungi; the diseases can be spread, 
directly or indirectly, from one person to another (Health topics, 
2015). Infectious diseases are among the leading cause of death in the 
human population worldwide. About 20 million people are affected by 
measles each year, primarily in the developing areas of Africa and Asia 
(Measles, 2015). During the 20th century, smallpox was responsible 
for an estimated 300{500 million deaths. As recently as 1967, the 
World Health Organization (WHO) estimated that 15 million people 
contracted the disease and that two million died in that year (Smallpox, 
2015). Polio at its peak in the 1940s and 1950s would paralyse or kill 
over half a million people worldwide every year (Poliomyelitis) [1]. 
Medicine has advanced over the years, but infectious disease outbreaks 
still pose a strong treat to humans. The most successful strategy in 
controlling infectious diseases has been vaccination (Vaccine, 2015).

Vaccination is the administration of antigenic material (a vaccine) 
to stimulate an individual’s immune system to develop adaptive 
immunity to a pathogen. Vaccines can prevent morbidity from 
infection [2]. The effectiveness of vaccination has been widely studied 
and verified; for example, the influenza vaccine, the HPV (human 
papillomavirus) vaccine, and the chicken pox vaccine. Vaccination is 
the most effective method of preventing infectious diseases; widespread 
immunity due to vaccination is largely responsible for the worldwide 
eradication of smallpox (Edward Jenner in 1796) and the restriction of 
diseases such as polio, measles, and tetanus from much of the world 
[3-8]. The World Health Organization reports that licensed vaccines 
are currently available to prevent or contribute to the prevention and 
control of twenty-five infections (Vaccination, 2015). Vaccination 
operates by reducing the number of susceptible individuals in the 
population (Keeling and Rohani, 2008).

T﻿he question people normally ask in the midst of infection is this: 
Can the disease be eradicated or controlled? If the disease is always 
there, what proportion of the population will have it? Mathematical 
models attempt to provide answers to these questions. The SIR model 
in epidemiological modelling gives a simple dynamic description 
of three interacting populations, the susceptible, the infected, and 
the recovered. Though it is very simple, this model exhibits the basic 
structure associated to the spread of a disease in a population. There 
have been a lot of modifications to the basic SIR model to study 
more complex diseases and infection mechanisms as well as control 
measures (Sudipa et al. 2014). In this work, we discuss the equilibrium 

and stability analysis of a general susceptible-infected-recovered (SIR) 
epidemic model of infectious disease. We study both disease-free 
equilibrium and the endemic equilibrium of the afore-mentioned 
model [9,10]. We also discuss the basic reproduction number R0. We 
analyse vaccination as an intervention. We consider both the perfect 
and imperfect vaccines. This work also seeks to address the question, 
what proportion of the population should be vaccinated to control or 
eradicate the disease?

The paper is organized as follows: In Section 2, we present a 
formulation of general epidemic model and carry out the equilibrium 
and stability analysis of the model [11-15]. We also discuss the 
reproduction number and some numerical simulations. In Section 3, 
we carry out analysis for vaccination based on the model in Section 2. 
Section 4 contains the analysis of the imperfect vaccine and booster. 
Conclusion of this report is given in Section 5. The report is based 
mostly on the books (Keeling and Rohani, 2008) and (Britton, 2003).

The SIR Model
In this model, the total population (N) is categorised into three 

compartments namely, the susceptible (S), the infective (I), and the 
recovered (R). The susceptible are the uninfected individuals, but are 
able to become infected if exposed. The infective individuals are those 
with the disease and can transmit the infection to other susceptible 
individuals [16-18]. The recovered comprises of individuals who have 
been recovered from the infection and are immune to reinfection. 
At any given time (t), the number of individuals in the susceptible, 
infective and recovery class is denoted by S(t), I(t) and R(t), respectively 
(Britton, 2003).

Some assumptions underlying the model

The model makes the following assumptions:

1. The population is fixed.

2. The birth rate is equal to the death rate and there is no disease
related death.
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3.	 Individuals leave the infective class either by recovery (and 
move to class R) or due to natural death.

4.	 Age, sex, status and race do not affect the probability of being 
infected. 

5.	 All births enter the susceptible class.

6.	 Recovery confers immunity.

The compartmental model

SIR compartmental model indicating the movement of individuals 
from one class to the other.

Putting all these assumptions together with the corresponding 
notations, the above model as seen in Figure 1 can be represented 
mathematically by the following system of differential equations:

S=bn–βsi-bs,

I=βSI–γI–bI,    					                      (1)

R=γi-bR,

With the non-negativity requirements of the initial conditions:

S(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0.     			                 (2)

The parameter b is the natural birth or death rate, is the effective 
contact rate between susceptible and infected individuals and is 
the recovery rate of an infected individual. N is the total population 
under consideration. Thus the total population density is given by 
S(t)+I(t)+R(t)=N(t). Adding the three equations, we see that

N=S+I+R=0;

so that N(t)=N(0) and the population size is constant.

As well as having positive initial data (2), the solution lies in the set 

{(S, I, R); S ≥ 0, I ≥ 0, R ≥ 0,S+I+R+N}

It is easy to check that for all t>0,

S(t)>0, I(t)>0, R(t)>0.

so that the solution remains in the above set.

The basic reproduction number

Now we determine the reproduction number R0. This is an 
important quantity which determines whether a disease persists or dies 

out. It is defined as the average number of secondary cases arising from 
a single infective introduced into an entirely susceptible population 
of size N (Keeling and Rohani, 2008). The single infected individual 
makes β N contacts per unit time.

Also, the expected length of time that an infective remains in that 
state is. 

Hence

0 +b
NR β

=
γ

 					                   (3)

We show later that R0 is the critical parameter in determining the 
stability of equilibria for the above system.

Equilibria

We want to investigate the dynamics of the disease in the long 
run. We do this by considering what happens when the system is at 
equilibrium. At the equilibrium, we set all equations (14) in the system 
to zero and find the values of the variables S*, I*, R* which we now 
denote as S; I; R. We do this in the following result.

Theorem 4.1

The equilibrium points of the system (14) are (N,0,0) and

0 0
0 0

, (R 1) (R 1)N b N b
R Rβ β

 
− − − − 

 

Proof.

We set all equations to zero

bN-βSI-bS=0,

βSI-γI-bI=0,

γI-Br=0      					                    (4)

If I=0, the second equation in (4) holds. Using I=0 we obtain

R=0, bN-Bs=0 					                    (5)

Thus we have the equilibrium point
* * *
1 1̀ 1( , , ) (N,0,0)S I R =

This is called the disease-free equilibrium point. At the disease free 
equilibrium, the disease no longer exists and the entire population 
is made up of all susceptible individuals as can be seen from the 
calculation.

If I=0, then from the second equation in (4),

βS=γ+b

so that
bS γ

β
+

=      					                   (6)

Using this value of S we have,

0
0 0

(R 1)NI bN bbN I
R R
β

β
− − ⇒ = −

Now R is given by

0
0

R N (R 1)N b
R β

= − − −

For this to make biological sense we must have R0>1. This is 

RS IβSI γI

bN

bIbS bR

Figure 1: SIR compartmental model indicating the movement of individuals 
from one class to the other.
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because population variables cannot be negative. Hence we have the 
other equilibrium point as:

* * *
2 2 2 0 0

0 0

(S , I , ) , (R 1), N (R 1)N b NR
R Rβ

 
= − − − 
 

    	               (7)

This is called the endemic equilibrium point. If this equilibrium is 
stable, then the disease is not eradicated.

Let A be the mean time an individual remains susceptible. If 
R0>1, we use the above calculation to estimate A. Ignoring the small 
death rate, A will be equal to the inverse of the strength of infection, 
that is (βI)−1 . Using the equilibrium value for I in (7), we obtain an 
approximation to the mean age at infection:

0

1
(R 1)

A
b

≈
−

    				                  (8)

The life expectancy L of the host is L=b−1 so we have that
1

0 1R LA−− ≈   					                   (9)

For many animal and human infections, it is possible to measure 
L and A from data. We can then use the above expressions to estimate 
model parameters.

Stability analysis

Now we investigate the stability of these equilibrium points as follows:

Theorem 4.2 

If R0<1, then the disease free equilibrium (N, 0, 0) is stable.

Proof. 

The Jacobian matrix of the system (14) is given by:
* *

* *

0
( b) 0

0

I b S
J I S

b

β β
β β γ

γ

 − − −
 

= − − + 
 − 

We evaluate this at the disease-free equilibrium. 

The Jacobian matrix evaluated at the disease-free equilibrium gives:

*

0
(N,0,0) 0 ( b) 0

0

b N
J N

b

β
β γ

γ

− − 
 = − − + 
 − 

We compute the eigenvalues of this matrix as follows:

*

0
0 ( b) 0 0
0

b N
N

b

λ β
β γ

γ λ

− − −
− − + =

− −

( )( N ( ) )( b ) 0b bλ β γ λ λ⇒ − − − + − − − =

Thus are the eigenvalues at the disease-free equilibrium

λ1=−b, λ2=−b, λ3=βN−(γ+b),   			                (10).

For the equilibrium to be stable, it is required that all eigenvalues are 
negative (or zero). It can be seen clearly that for all the eigenvalues to be 
negative, we must have βN<(γ+b) which means that the reproductive 
number R0<1. Thus for R0<1, the disease-free equilibrium is stable.

Theorem 4.3.

If R0>1, then the endemic equilibrium (EE) is stable.

Proof.

The Jacobian matrix at the endemic equilibrium (EE) is given by: 

0
0

0
0

0

( , ) (R 1) ( b) 0

0

NbR
R

NJ E E b
R

b

β

β γ

γ

− − 
 
 

= − − + 
 
 −
 
 

Now we compute the eigenvalues of the endemic equilibrium point 
as follows:

0
0

0
0

0

(R 1) ( b) 0 0

0

NbR
R

Nb
R

b

βλ

β γ λ

γ λ

− − − 
 
  
 − − + − = 
  
 − − 
 
 The eigenvalues of this matrix are

λ1=−b, 

And after performing some algebra, we get

( )2
0 00

2,3.

4 (R 1)(b )
2 2

bR BbR γ
λ

− − +
= ±  

To complete the proof, we show that the real parts of λ2,3 are 
negative.

D=(bR0)
2−4b(R0−1)(b+γ). 

If D is negative then the eigenvalues λ2,3 are complex with 
0

2,3Re( ) 0
2
bRλ −

= <

If D>0 then since R0>1, √D<bR0 and both λ2 and λ3 are negative. 

For many problems, (bR0)
2 is very small so that the term under the 

square root sign is approximately

04 (R 1)(b )b γ− − +  				                   (11)

The duration B of infectivity is approximately, B=(b+γ)−1, so using 
eqn. (11) we can approximate eqn. (11) by 

−4(AB)−1.

Where A is given by eqn. (8).

From this, the eigenvalues are

0
2,3 2

bR i
AB

λ ≈ − ±    				               (12)

Since the eigenvalues are complex, the equilibrium is approached 
via damped oscillations. The period T of these oscillations is 
approximated by: 

2T ABπ≈    					                   (13)

By identifying the period we are able to determine when the disease 
will be most prevalent and when there will be a lull in the number of 
infected individuals. This could be useful in controlling an outbreak of 
a disease. 

If the reproduction number R0>1 is close to 1, then from eqn. 
(12), the real parts of the eigenvalues are negative and small while the 
imaginary part is very large. For this case, the approach to equilibrium 
is very slow and the period of oscillation is very large. 
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This completes our analysis of the SIR model. The results will 
provide the basis for our future investigations into vaccination and 
quarantine control methods. We have identified the parameter R0 
which determines if we have an endemic or a disease-free outcome.

Numerical simulations  

In this section, we show some numerical simulations which 
illustrate some of the results in this chapter. The calculations are all for 
the SIR model given by eqn. (14). A crucial parameter which governs 
the behaviour of the system is the reproduction number R0 which is 
given in eqn. (3). All the graphs have time (measured in years) on the 
horizontal axis and the proportion of the population who are either 
susceptible, infective or recovered is on the vertical axis. All simulations 
are produced using python (odeint) (Figure 2).

b=1/70, β=520, γ=365/7.

The initial data is

S(0)=0.1, I(0)=2.5 × 10−4, R(0)=0.9−2.5 × 10−4. 

A calculation shows that R0=10. From section 2.5, the endemic 
equilibrium is stable, but the amplitude of the fluctuations declines 
over time as the system equilibrates (a ”damped oscillator”). From (13) 
the period T of oscillation is approximated as:

T=0.774π=2.43.

The simulation shows that there are approximately four oscillations 
every ten years which matches the above value of T. This result is shown 
in Figure 3.

Vaccination against an SIR Epidemic
For many infectious diseases there has been much focus on 

vaccinating new borns or young infants. Let p denote the fraction of 
new borns who are successfully vaccinated. The assumption is that the 
vaccine provides long-lasting immunity to the infection which prevents 
both transmission and disease

The question we want to analyse is this: What proportion of the 

population do we have to vaccinate in order to eradicate the disease?

The SIR model with vaccination

When we put this into the SIR model we get the following: 

( )' 1S b p N SI bSβ= − − −  
'I SI I bIβ γ= − −  
'R I bR bpNγ= − +       				                   (14)

This modification can be dynamically explored using a simple 
change of variables: 

( ) 1 1 11 , (1 ) (1 p)RS p S I p I R pN= − = − = − +  

These substitutions give rise to a new set of differential equations 
as follows

( ) ' 2
1 1 1 11 (1 p) N (1 ) (1 p)Sp S b p S I bβ− = − − − − −  

( ) ' 2
1 1 1 1 11 (1 p) S I (1 ) (1 p) Ip I p I bβ γ− = − − − − −  

( ) '
1 1 11 (1 p) I (1 )R pNp R b p bpN bγ− = − − − − +   

Dividing by 1-p gives:

( )'
1 1 1 11S bN p S I bSβ= − − −  

( )'
1 1 1 1 11I p S I I bIβ γ= − − −  

'
1 1 1R I bRγ= −      				               (15)

It can be seen that this equation is same as the SIR model with β 
replaced by (1−p)β. Hence, we get a new R0 denoted by R∗

0 by:

( )*
0 0

1
(1 )

p N
R p R

b
β

γ
−

= = −
+

  			                (16) 

From the stability analysis carried out in Section 2.5, the disease-
free equilibrium is stable if *

0 1R <

Hence to prevent the disease from spreading, we need to ensure that

(a)                       (b)
Figure 2: Numerical solutions of the SIR model (14) with b=0.5, β=3, γ=4, N=1, S(0)=0.4, I(0)=0.6, R(0)=0.0 and R0=0.74 < 1. By Theorem 2.2 the 
disease-free equilibrium is stable (a). Also, b=0.5, β=45, γ=4, N=1, s(0)=0.8, I(0)=0.2, R(0)=0, and R0=10 > 1. By Theorem 2.3, the endemic equilibrium 
is stable (b).
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*
0 0(1 ) 1R p R= − <

This is ensured by vaccinating a critical proportion p̂  of the 
susceptible individuals (newborns). 

We calculate p̂  by solving
*
0 0ˆ(1 ) 1R p R= − =

to get

0

1ˆ 1p
R

= − 					                  (17)

For the disease to be eradicated totally from the population, we 
need to vaccinate at least a proportion of the susceptibles p with

0

1ˆ 1p
R

= −    					                 (18)

In order to eradicate an infection, not all individuals need to 
be vaccinated, as long as a critical proportion (determined by the 
reproduction number of the infection) have been afforded protection. 
This phenomenon is referred to as “herd immunity” (Keeling and 
Rohani, 2008).

Table 1 (taken from Britton, 2003) shows some infectious diseases 
with their estimated values of R0 and ˆ p. Most of these data are from 
England and Wales, USA or other developed countries. It is estimated 
that values of R0 in developing countries tend to be higher, especially 
in densely populated countries such as the Indian subcontinent. The 
values of R0 for smallpox given in Table 1 are for developing countries 
and they are surprisingly low. See Figure 4 for the relationship between 
R0 and the critical vaccination proportion Table 1.

Considering Poliomyelitis, we can see that for the disease to 
be eradicated, we need to successfully vaccinate at least 83% of the 
susceptible individuals especially new born babies. For the case of 
whooping cough, eradication of the disease from the population 
requires a successful vaccination of 94 % of all susceptible individuals. 
This could be practically difficult especially in countries where finances 
play a major role in the number of people who receive the vaccines. We 
therefore need to explore other means of disease control which may 
be relatively cheaper. One such method is pulse vaccination (Keeling 
and Rohani, 2008) in which we repeatedly vaccinate the susceptible 
individuals S over a defined age range until the disease dies out. We 
will discuss this in the next section.

Numerical Simulations of the SIR model with vaccination

In this section, we show some numerical simulations which 
illustrate some of the results in this chapter. The calculations are all 
for the modified SIR with vaccination model given by eqn. (14). A 
crucial parameter *

0R  given by eqn. (16) governs the behaviour of the 
system. Eradication of infection is ensured by vaccinating a threshold 
proportion of the susceptible individuals given in eqn. (17).

Example 5.1. In this example, all parameters are same as in Figure 
2 in the previous section. To prevent the disease from spreading using 
eqn. (18), we vaccinate at least a critical proportion

p̂  0.9,

of the susceptible individuals. The vaccine reduces the reproduction 
number R0 from R0=10 to R∗

 0=0.9. By Theorem 2.2 the disease-free 
equilibrium is stable. That is, the vaccine is eradicating the disease from 
the population under consideration. This result with p= p̂  is shown in 
Figure 5.

Example 5.2 This example again uses the same parameter values as 
2.6 Figure 2. We consider the case where the proportion of susceptible 
individuals vaccinated

p=0.35<0.9= p̂ ,

is less than the critical proportion ̂p needed to eradicate the disease. The 
reproduction number R0=10 is reduced to

Figure 3: Dynamics for Example 2.1

Infectious disease R0 P
∧

%
Smallpox 3-5 67-80
Measles 12-13 92
Whooping cough 13-17 92-94
Chickenpox 9-10 89-90
 Mumps 4-7 75-86
Diphtheria 4-6 75-83
Poliomyelitis 6 83

Table 1: Table showing the relationship between R0 and p
∧

 for some disease.

Figure 4: This figure shows the relationship between R0 and the fraction of 
susceptibles that needs to be vaccinated in order to eradicate the disease. 
This Figure is taken from (Keeling and Rohani, 2008).
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R∗ 0=6.5>1. By Theorem 2.3, the endemic equilibrium is stable, 
that is, the infection do not die out but the rate at which the infection 
spreads is reduced. In the long run, about 5% of the population is 
infected. Figure 6 illustrates this result.

We see that by implementing the vaccination program, the level of 
infected individual’s decreases. It converges to an endemic equilibrium 
but at a lower level than Figure 2 (which has p=0). This example shows 
how mathematical modelling play an important role in estimating how 
much a vaccination program can help. Public health authorities can use 
this information to see how the benefits match the cost of a vaccination 
program (Figure 6).

Imperfect Vaccines and Boosting
In the previous chapter, we showed that vaccines can dramatically 

reduce the number of new infectious cases. A major assumption 
was that the vaccines that were administered were 100% effective in 

providing permanent protection. However, the immunity obtained 
from a vaccine may not be complete and may wane with time. To 
prevent the resurgence of a disease, it can be advantageous to boost the 
initial vaccination (Keeling and Rohani, 2008).

The model

The model accounts for two aspects of an imperfect vaccine:

(i) Incomplete protection.

(ii) The decrease in vaccination-induced protection.

We modify the equations in Section 3 to take account of these 
aspects. We add a new class to the model in Section 3 so there are now 
four classes; S, Sv, I and V. Here S is the susceptibles, Sv is vaccinated, 
I is infectious. The class V is the booster vaccinated (or recovered) 
individuals who are immune for life. Figure 7 represents the dynamics 
in a flow diagram.

The parameter α represents the amount that the initial vaccination 
failed to confer full immunity against the disease. The rate at which the 
immunity granted by the first vaccination decreases is the parameter 
δ. The parameters θ and represent the rates of administration of the 
booster vaccine to the previously vaccinated and susceptible classes 
respectively. Other parameters are defined as in the previous chapters.

The following system of ODE’s describe the model:
'' (1 p) N SI bS cS vS b Sβ δ= − − − − +

' N (1 ) S I ( b 0)v w vS bp cS Sα β δ= + − − − + +

' (1 ) (b ) IvI SI S Iβ α β γ= + − − +
'V vS I bVθ γ= + −    (19)

A calculation shows that:
' '' ' ' 0vS S I V+ + + =  

so the total population is constant and

S S I V N+ + + =

We then have

vV N S S I= − − −

Hence, we can reduce and analyse the first three equations in eqn. (19).

Figure 5: Dynamics for Example 3.1

Figure 6: Dynamics for Example 3.2

I

θ

δ

βS V

β (1 − α )

γ

Sv

∋ 

Figure 7: Simple SSvIV compartmental model which represents the dynamics 
in a flow diagram.
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Disease eradication

As in earlier chapters, the system has both a disease-free equilibrium 
and an endemic equilibrium. Analysis of these equilibrium solutions 
are more complicated than the previous model. Since we are interested 
in preventing an endemic spread of disease, we only study the stability 
of the disease-free equilibrium. To do this we need only to study the 
three dimensional system given by the first three equations in eqn. (19).

We find the disease-free equilibrium with I=0. For this equilibrium:

b(1−p)N−bS−∈S+δSv=0,

pbN+∈S−(δ+b+θ)Sv=0.   				                   (20)

Solving these equations we obtain:

[(b )(1 p) ]
(b c)(b ) b

bNS θ δ
θ δ

+ − +
=

+ + +

(bp )
(b )(b ) bv

bNS
θ δ
+∈

=
+∈ +

    				                   (21) 

We now study the stability of the disease-free equilibrium (DFE). 

The Jacobian matrix at this equilibrium is given by:

(DFE) ( b ) (1 ) S
0 0 (1 ) S (b )

v

v

b c S
J c

S

δ β
δ θ α β

β α β γ

− − − 
 = − + + − − 
 + − − + 

The eigenvalues of J(DFE) are as follows:

λ1=βS+(1−α)βSv−(b+γ),				                  (22)

And the solution to the quadratic

λ2+(2b+δ+θ)λ+b(δ+b+θ+)+∈θ=0. 			                 (23)

Since the coefficients of the quadratic in eqn. (23) are positive, the 
solutions of the quadratic have negative real parts. It follows that the 
disease-free equilibrium will be stable if λ1<0 and unstable if λ1>0.

Using the expression for S and Sv given by eqn. (21), we can 
calculate the reproduction number r0 so that we have stability if r0<1 
and instability if r0>1. After some algebra we obtain:

0
[(b )(1 p) (1 )(bp )]

[(b )(b ) b](b )
b Nr β θ δ α

θ δ γ
+ − + + − +∈

=
+∈ + + +

		              (24)

Analysis of the reproduction number

To eradicate the disease we require that r0<1. In principle, this may 
be achieved by increasing the vaccination level p. However, this is not 
always feasible, so it is important to understand how r0 depends on the 
other parameters.

To continue this analysis, it is useful to relate r0 in eqn. (24) to the 
reproduction number for a population that is completely susceptible, 
that is, no vaccination. This was the case considered in Section 2.3 for 
which

0
NR

b
β

γ
=

+
 					                  (25)

After some algebra, eqn. (24) can be rewritten as:

0 0
(bp )(b )1

(b )(b ) b
r Rα θ

θ δ
 +∈ +

= − + +∈ + 
  			                 (26)

To understand the critical vaccination level that is needed to 

prevent the disease spreading, we consider the case when there is no 
boosters so that ∈=θ=0. This is the same as the vaccination model in 
Section 3 but with partial protection and waning immunity. Solving 
r0=1 for this case gives the critical vaccination level:

0

11c
bp

R b
δ
α

  + = −  
  

      			                 (27)

so that r0<1 if p > pc. As a check, for a perfect vaccine we have that α=1 
and δ=0 and pc is equal to the value in eqn. (17).

We now use this result to show that it may be impossible to 
eradicate the disease. Suppose that the primary vaccine provides 
perfect immunity (α=1) and that this protection wanes with time (δ > 
0). For this case

0

11c
bp

R b
δ  + = −  

  
For pc to be less than 1 we require

0

11b
b Rδ

> −
+

     				                    (28)

The LHS of the inequality in eqn. (28) is the fraction of the vaccinated 
individuals life during which they are protected from infection.

If, for example R0=2 then eradication is possible only when the 
vaccine protects individuals for more than half their life. Hence  the 
need for booster vaccination.

Numerical simulations of the SIR model with vaccines and 
boosting

In this example, we assume the following parameter values:

b=0.5, β=19, γ=4=1, α=0.90, θ=1, δ=0.05, N=1,

with p to be chosen.

A calculation shows that if we have no vaccination the SIR model 
gives

0 4.2NR
b
β

γ
= =

+
so the endemic equilibrium is stable.

We now use equation (26) to calculate r0:

 0
(0.5 1)(0.5x 0.90 1)1 4.2

(0.5 1)(0.5 1) 0.5x 0.05
pr x

 + +
= − + + + 

To find the critical vaccination level we solve r0=1 to get

pc=0.4.

Taking p=0.5 greater than pc, with the above values of the other 
parameters we calculate that the reproduction number R0=4.2 is 
reduced to r0=0.86. Since r0 is less than 1, from Section 4.2 the disease 
free equilibrium is stable. 

We numerically solve equation (19) with the above parameter 
values and p=0.5. The result is shown in Figure 8.

Conclusion
One motivation for studying mathematical models of infectious 

diseases is to improve methods for controlling and eradicating disease. 
The key equations for doing this, the SIR model was studied in Section 
2. The reproduction number R0 was derived and it was shown that if 
R0<1 then the disease will die out while if R0>1, the disease will spread. 
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A list of the estimated values of R0 was given in Table 1. The aim of any 
control policy is to reduce R0 and to make it less than 1 if possible.

There are a number of limitations to the SIR model.

• Disease may spread spatially. To model this we would replace
the ordinary differential equations in the SIR model by partial
differential equations.

• Seasonality can be important in the study of some diseases. To
model this we would replace some of the constant parameters
in the SIR model by periodic functions of time.

• Some elements of the disease may be random and we would
need to replace the deterministic SIR model by a stochastic
differential equation.

In later sections we studied a method used to combat disease. In 
Section 3 we studied vaccination and we determined the minimum 
vaccination level needed to eradicate a disease. Not all vaccines are 

perfect, any may over incomplete protection. This was studied in 
Section 4. It was found that vaccination is an effective strategy to 
control infectious disease. 
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