alexa Value of 18F-FDG Accumulation in Mediastinal and Hilar Lymph Nodes on 18F-FDG PET/CT: Relation to Recurrence of Cardiac Sarcoidosis | Open Access Journals
ISSN: 1747-0862
Journal of Molecular and Genetic Medicine
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Value of 18F-FDG Accumulation in Mediastinal and Hilar Lymph Nodes on 18F-FDG PET/CT: Relation to Recurrence of Cardiac Sarcoidosis

Maruoka Y1*, Baba S1, Isoda T1, Kitamura Y1, Nagao M2, Ide T1, Hiasa K1, Sasaki M1 and Honda H1

1Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

2Tokyo Women’s Medical University, Tokyo, Japan

*Corresponding Author:
Dr. Yasuhiro Maruoka
Graduate School of Medical Sciences, Kyushu University
3-1-1 Maidashi, Higashi-Ku Fukuoka-city, Fukuoka, 812-8582, Japan
Tel: 81-92-642-5695
Fax: 81-92-642-5820
E-mail: [email protected]

Received Date: August 14, 2017; Accepted Date: August 22, 2017; Published Date: August 25, 2017

Citation: Maruoka Y, Baba S, Isoda T, Kitamura Y, Nagao M, et al. (2017) Value of 18F-FDG Accumulation in Mediastinal and Hilar Lymph Nodes on 18F-FDG PET/CT: Relation to Recurrence of Cardiac Sarcoidosis. J Mol Genet Med 11:284. doi: 10.4172/1747-0862.1000284

Copyright: © 2017 Maruoka Y, et al. This is an open-access article distributed under the terms of the creative commons attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Molecular and Genetic Medicine

Abstract

Purpose: 18F-fluorodeoxyglucose (18F-FDG) accumulation in the left ventricular (LV) wall detects active myocardial inflammatory lesions in cardiac sarcoidosis (CS), but the significance of 18F-FDG accumulation in mediastinal and hilar lymph nodes (LNs) remains unclear. We investigated the association between CS recurrence and 18F-FDG accumulation in the mediastinal and hilar LNs, using positron emission tomography/computed tomography (PET/CT).

Materials and Methods: We retrospectively analyzed the records of 68 patients diagnosed with CS, who underwent 18F-FDG PET/CT before beginning treatment. The minimum follow-up period was 24 months. Patients were assigned to the recurrence (n=18) or no recurrence group (n=50) based on follow-up examinations. The 18FFDG PET/CT maximum standardized uptake value (SUVmax) was measured in the LV wall, right ventricular (RV) wall, and mediastinal and hilar LNs. The association of CS recurrence was analyzed using Cox proportional hazards models. Recurrence-free survival (RFS) curves were made using the Kaplan-Meier method.

Results: In univariate analysis, sex, BNP, LVEF, and the SUVmax in the LV wall, RV wall, and mediastinal and hilar LNs were significant risk factors for CS recurrence. In multivariate analysis, only the SUVmax in the mediastinal and hilar LNs was a significant risk factor for CS recurrence. RFS rates were significantly higher in patients with an SUVmax<4.1 vs. ≥ 4.1 (log-rank value=36.0, p<0.01).

Conclusion: The mediastinal and hilar LN SUVmax was an independent risk factor for CS recurrence after treatment. 18F-FDG accumulation in mediastinal and hilar LNs on 18F-FDG PET before treatment may be a useful biomarker to predict CS recurrence.

Keywords

Cardiac sarcoidosis; 18F-FDG PET; Lymph nodes; Recurrence-free survival

Abbreviations:

CS: Cardiac Sarcoidosis; LV: Left Ventricular; RV: Right Ventricular; LVEF: Left Ventricular Ejection Fraction; 18F-FDG: 18Ffluorodeoxyglucose; 18F-FDG PET: 18F-Fluorodeoxyglucose Positron Emission Tomography; LNs: Lymph Nodes; CT: Computed Tomography; JMHW: Japanese Ministry of Health and Welfare; CRT: Cardiac Resynchronization Therapy; LVAD: Left Ventricular Assist Device; SUV: Standardized Uptake Value; SUVmax: Standardized Uptake Value Maximum; VOI: Volume of Interest; NYHA: New York Heart Association; RFS: Recurrence-Free Survival; SD: Standard Deviation; ROC curve analysis: Receiver Operating Characteristic curve analysis

Introduction

Sarcoidosis is a disease of unknown etiology, characterized by the presence of non-caseating granulomas that can affect multiple organs. Cardiac involvement in sarcoidosis is associated with heart failure, ventricular tachyarrhythmias, conduction disturbances, and sudden cardiac death and is one of the leading causes of disease-related death [1-4]. Cardiac sarcoidosis (CS) may impair left ventricular (LV) [5] and right ventricular (RV) [6] function, and a low LV ejection fraction (LVEF) leads to poor prognosis [5]. Corticosteroid therapy is the mainstay of CS treatment [7,8], and its efficacy is about 50% [9,10]. Options for corticosteroid-refractory CS include immunosuppressant therapy and placement of an implantable cardiac defibrillator. However, recurrence of CS after these treatments is not rare and leads to a poor prognosis. Naruse et al. reported that 38% of CS patients experienced recurrent disease [11]. Therefore, it is clinically meaningful to evaluate the risk of recurrence of CS, although the risk factors remain unclear.

The inflammatory lesions of CS are known to accumulate 18Ffluorodeoxyglucose (18F-FDG), making 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) a useful modality for diagnosis in patients suspected to have this disease. Further, reports indicate its utility for the detection of active myocardial inflammatory lesions [12-14] and the assessment of therapeutic effects following treatment in patients with CS [15]. In addition to the utility of 18FFDG PET for the prediction of therapeutic effect in CS, its use for the assessment of the risk for adverse events, including sudden death, has also been investigated [12,15,16]. Recent studies indicate that metabolism-perfusion imaging (rubidium-FDG PET) predicts disease activity in CS [17] and that 18F-FDG accumulation in the LV and RV wall on 18F-FDG PET predicts the clinical impact of CS [6,18,19].

Mediastinal and hilar lymph nodes (LNs) are common sites of involvement in sarcoidosis [1]. However, no reports focus on the clinical significance of 18F-FDG accumulation in mediastinal and hilar LNs in CS. Inflammation in the thoracic cavity is associated with high 18F-FDG accumulation in the mediastinal and hilar LNs. Therefore, we hypothesized that mediastinal and hilar LNs are also affected by the CS disease process. Moreover, there are no well-established risk factors for recurrent CS. The purpose of this study was to investigate the association between the recurrence of CS and 18F-FDG accumulation in the mediastinal and hilar LNs and in the LV and RV walls in patients with CS.

Methods

Patients

This study was approved by our institutional review board and written informed consent from each patient was obtained. We retrospectively evaluated the medical records of 111 consecutive patients that raised suspicion of CS who underwent 8F-FDG PETcomputed tomography (CT) between January 2010-December 2014. Patients diagnosed with CS based on the 2006 Japanese Ministry of Health and Welfare (JMHW) guidelines [20,21] were included. Our exclusion criteria were: 1. high blood glucose level (>150 milligrams per deciliter (mg/dL)), and 2. No uptake or diffuse-type uptake of 18FFDG in the LV myocardium [21].

Following patient selection, 68 patients were available for our analysis and their characteristics are shown in Table 1. All patients were initially treated with prednisolone, 30 mg per day. In 2 of the 68 patients, the steroid was discontinued due to side effects and the immunosuppressives were used instead. The response to treatment was determined by the consensus of two cardiologists. The patients who did not demonstrate a stabilization of clinical symptoms and improvement of cardiac function after steroid therapy were treated with immunosuppressant therapy, cardiac resynchronization therapy (CRT), or an LV assist device (LVAD).

Variables No recurrence
(n=50)
Recurrence
(n=18)
Age (years old) 58 ± 11 63 ± 11
Sex
Men/women 30/20 3/15
NYHA class
Ⅱ/ Ⅲ 41/9 13/5
Myocardial histopathological diagnosis
Positive/negative 14/36 7/11
Follow-up period (month) 36 ± 5 35 ± 8
BNP (pg/mL) 257 ± 320 487 ± 414
Electrocardiographic abnormalities
Atrioventricular block 31/50 (62%) 8/18 (44%)
Left bundle branch block 7/50 (14%) 3/18 (17%)
Right bundle branch block 17/50 (34%) 5/18 (28%)
Left axis deviation 14/50 (28%) 5/18 (28%)
Premature ventricular contraction 29/50 (58%) 10/18 (56%)
Ventricular tachycardia 3/50 (6%) 4/18 (22%)
Echocardiography abnormalities
Interventricular septum wall thinning 40/50 (80%) 13/18 (72%)
Regional wall motion abnormality 44/50 (88%) 16/18 (89%)
Ventricular aneurysm 2/50 (4%) 1/18 (6%)
Regional wall thickening 5/50 (10%) 3/18 (17%)
LVEF (%) 50 ± 15 41 ± 11
Treatment characteristics
Only steroid therapy 45/50 (90%) 1/18 (6%)
Immunosuppressant therapy 2/50 (4%) 17/18 (94%)
CRT 5/50 (10%) 7/18 (39%)
LVAD 0/50 (0%) 3/18 (17%)

Table 1: Baseline characteristics of the patients.

18F-FDG PET/CT Imaging

In each patient, a low-carbohydrate and high-fat diet [22] was started 24 hours before 18F-FDG injection and it was continued for 6 hours. After an 18-hour fast, 4 MBq/kg of 18F-FDG was then administered intravenously [23]. Cardiac scanning was started 60 minutes after the injection of 18F-FDG. 18F-FDG PET/CT images were generated using a PET/CT instrument equipped with 24 ring detectors consisting of 560 BGO crystals (4.7 mm × 6.3 mm × 30 mm) (Discovery STE; GE Medical Systems, Milwaukee, WI, US). The acquisition time per bed position in the emission scans was 10 minutes. The PET image matrix size was 128 mm × 128 mm (5.47 mm × 5.47 mm × 3.27 mm). For image reconstruction, the ordered subset expectation maximization method (VUE Point Plus) with 2 iterations and 28 subsets was used. The full-width at half maximum was 5.2 mm. A 16-slice scan (tube voltage, 120 kV; effective tube current, 30 mA to 250 mA) was performed for the purpose of attenuation correction before the PET image scans were started. The CT scan images were 512 × 512 matrices and had a slice thickness of 5 mm. The PET/CT fusion images were obtained using GENIE-Xeleris workstation software (GE Medical Systems, Milwaukee, WI).

Image evaluation

The 18F-FDG PET image standardized uptake value (SUV) maximum (SUVmax) was measured in the LV wall, RV wall, and mediastinal and hilar LNs [6,21]. The SUV was obtained from each pixel as pixel activity (injected dose/body weight). A spherical volume of interest (VOI) corresponding to the LV wall, RV wall, and mediastinal and hilar LNs was manually drawn, and the highest pixel value was determined as the SUVmax.

Analysis of CS recurrence

All patients were followed up by cardiologists at our institution at least every 3 months after discharge. The minimum follow-up period was 24 months, and 18F-FDG PET was performed at least every 6 months during this time. Patients in recurrence group had an interim 18F-FDG PET at 3 months to demonstrate resolution. Physicians performed blood tests, ECG, echocardiography, and 18F-FDG PET when they suspected a recurrence of CS. A CS recurrence was judged based on a myocardial focal-type or diffuse-on-focal-type uptake findings on 18F-FDG PET as well as clinical symptoms with New York Heart Association (NYHA) class or more and cardiac dysfunction (EF<50%) [21], and the patients presented with arrhythmia were also defined as a recurrence. The patients were divided into recurrence and no recurrence groups according to their SUVs using the optimal cutoff values and recurrence-free survival (RFS) between the groups.

Statistical analysis

Continuous data are expressed as the mean ± standard deviation (SD). Comparisons of LVEF and the 18F-FDG PET SUVmax in the LV wall, RV wall, and mediastinal and hilar LNs pre-treatment between the recurrence and no recurrence groups were analyzed using the Wilcoxon test. The Spearman correlation test was used to assess correlations between two values. The ability of the SUVmax in the LV wall, RV wall, and mediastinal/hilar LNs to differentiate the recurrence from the no recurrence group and to predict recurrence after therapy was analyzed by receiver operating characteristic (ROC) curve analysis. In patients with recurrence, comparisons of the SUVmax in the LV wall, RV wall, and mediastinal and hilar lymph nodes before treatment and after recurrence were performed using paired t-tests. We applied univariate and multivariate Cox proportional hazard models to analyze the prediction of recurrence of CS. Covariates included age, sex, New York Heart Association (NYHA) class, brain natriuretic peptide (BNP), LVEF, and 18F-FDG PET measurements. Survival curves of patient subgroups were created using the Kaplan-Meier method to clarify the time-dependent, cumulative recurrence-free rate and compared using the log-rank test. The tests were performed using JMP statistical software (version 10.0; SAS Institute, Inc., Cary, NC, USA). A p value of less than 0.05 was considered significant.

Results

Comparison of 18F-FDG PET measurements between the recurrence and no recurrence groups

CS recurrence occurred in 18 patients. The 18 CS patients with recurrence were followed for 25 to 49 months (median follow-up, 36 months) and the 50 CS patients without recurrence were followed for 24 months to 52 months (median follow-up, 34 months). The SUVmax results in the LV and RV walls and mediastinal and hilar LNs pretreatment were significantly higher in the recurrence group than in the no recurrence group (8.6 ± 3.8 vs. 5.1 ± 2.7, p<0.0001, 3.8 ± 3.2 vs. 1.8 ± 1.0; p=0.01, 8.6 ± 4.6 vs. 2.8 ± 1.1; p<0.0001, respectively) (Table 2).

Variables No recurrence
(n=50)
Recurrence
(n=18)
SUVmax
LV wall 5.1 ± 2.7 8.6 ± 3.8**
RV wall 1.8 ± 1.0 3.8 ± 3.2*
Mediastinal/hilar LNs 2.8 ± 1.1 8.6 ± 4.6**

Table 2: The difference in 18FDG-PET measurements between patients with and without recurrence of CS.

Correlations between 18F-FDG accumulation in mediastinal/ hilar LNs and myocardium

There was a significant positive linear correlation between the SUVmax in the mediastinal and hilar LNs and the LV wall (r=0.70, p<0.0001) and between the SUVmax in the mediastinal and hilar LNs and the RV wall (r=0.71, p<0.0001).

Correlations between LVEF and 18F-FDG PET parameters

There was a significant inverse linear correlation between the LVEF and SUVmax in the LV wall (r=0.38, p=0.001) and between the LVEF and the SUVmax in the RV wall (r=0.25, p=0.04). However, there was no significant correlation between the LVEF and the SUVmax in the mediastinal and hilar LNs (r=0.21, p=0.09).

Predictability of recurrence after treatment in patients with CS with 18F-FDG PET parameters

ROC curve analysis revealed that the optimal SUVmax thresholds for predicting recurrence of CS in the LV wall, RV wall, and mediastinal and hilar LNs were 6.4, 2.4, and 4.1, with an AUC of 0.82, 0.69 and 0.93, accuracy of 76% (52/68), 81% (55/68) and 91% (62/68), sensitivity of 83% (15/18), 56% (10/18) and 94% (17/18), and specificity of 74% (37/50), 90% (45/50) and 90% (45/50), respectively (Figure 1).

molecular-genetic-medicine-cardiac-sarcoidosis

Figure 1: Predictability of risk for cardiac sarcoidosis (CS) recurrence after treatment, using receiver operating characteristic (ROC) curve analysis. ROC curves demonstrating the ability of the maximum standardized uptake value (SUVmax) to predict CS recurrence are shown for the left ventricular (LV) wall (left), right ventricular (RV) wall (center), and mediastinal and hilar lymph nodes (LNs) (right). The areas under the curve for SUVmax in the LV wall, RV wall, and mediastinal and hilar LNs were 0.82, 0.69, and 0.93, respectively.

RFS analysis with Cox proportional hazards model

In univariate analysis, the χ2 and the hazard ratio to predict recurrence of CS were 1.96 and 0.69 for age, 5.90 and 0.54 for sex, 0.82 and 0.75 for the NYHA class, 11.0 and 0.43 for BNP, 7.31 and 0.50 for LVEF, 10.3 and 0.41 for the LV wall SUVmax, 5.54 and 0.43 for the RV wall SUVmax, and 20.6 and 0.24 for the mediastinal and hilar LN SUVmax, respectively. In multivariate analysis, the χ2 and the hazard ratio to predict recurrence of CS were 0.20 and 0.87 for age, 2.56 and 0.64 for sex, 0.89 and 0.64 for the NYHA class, 2.36 and 0.56 for BNP, 3.60 and 0.50 for the LVEF, 0.014 and 0.95 for the LV wall SUVmax, 0.31 and 0.78 for the RV wall, and 7.69 and 0.34 for the mediastinal and hilar LN SUVmax, respectively (Table 3).

Characteristics Variables Univariate analysis Multivariate analysis
χ2 Hazard ratio p χ2 Hazard ratio 95% CI p
Age (years old) ≥ 54 vs.<54 1.96 0.69 0.17 0.20 0.87 0.46- 1.65 0.66
Sex Men vs. women 5.90 0.54 0.02 2.56 0.64 0.36-1.11 0.11
NYHA class Ⅲ vs. Ⅱ 0.82 0.75 0.37 0.89 0.64 0.26-1.62 0.35
BNP (pg/mL) ≥ 133 vs.<133 11.0 0.43 0.0009 2.36 0.56 0.26-1.18 0.13
LVEF (%) <45 vs. ≥ 45 7.31 0.50 0.007 3.60 0.50 0.25-1.06 0.07
18F-FDG PET measurement
SUVmax of LV wall ≥ 6.4 vs.<6.4 10.3 0.41 0.0013 0.014 0.95 0.44-2.12 0.91
SUVmax of RV wall ≥ 2.4 vs.<2.4 5.54 0.43 0.019 0.31 0.78 0.32-1.89 0.58
SUVmax of mediastinal/hilar LNs ≥ 4.1 vs.<4.1 20.6 0.24 <0.0001 7.69 0.34 0.16-0.73 0.0058

Table 3: Recurrence relation factor after treatment of CS.

RFS rates were significantly higher in patients with a mediastinal and hilar LN SUVmax<4.1 than in those with an SUVmax ≥ 4.1 (logrank value=27.9, p<0.0001) (Figure 2).

molecular-genetic-medicine-survival-curves

Figure 2: Recurrence-free survival (RFS) curves of two groups classified by a cutoff value of 4.1 for the maximum standardized uptake value (SUVmax) in the mediastinal and hilar lymph nodes. RFS rates were significantly different between patients with SUVmax<4.1 (red) vs. ≥ 4.1 (blue).

Comparison of the SUVmax in the LV wall, RV wall, and mediastinal/ and hilar LNs before and after treatment in CS patients with recurrence

18F-FDG PET was performed at the time that recurrence was diagnosed in all 18 cases. There was no significant difference in the SUVmax in the LV wall (8.6 ± 3.9 vs. 6.7 ± 2.7, p=0.06) or the RV wall (3.8 ± 3.3 vs. 2.5 ± 1.8, p=0.08) between the pretreatment and disease recurrence examinations. In contrast, the SUVmax in the mediastinal and hilar LNs was significantly lower before-treatment than after recurrence (8.5 ± 4.6 vs. 4.0 ± 2.0, p<0.01) (Table 4).

Variables SUVmax at diagnosis SUVmax at recurrence
LV wall 8.6 ± 3.8 6.7 ± 2.7
RV wall 3.8 ± 3.2 2.5 ± 1.7
mediastinal/hilar LNs 8.5 ± 4.6 4.0 ± 2.0*

Table 4: The difference in 18FDG-PET measurement in patients with recurrence, between diagnosis and after recurrence.

Discussion

Our results demonstrate that the SUVmax in the LV wall, RV wall and mediastinal and hilar LNs before treatment in the recurrence group were significantly higher than the corresponding SUVmax results in the no recurrence group. Additionally, our multivariate analysis indicates that the high SUVmax in mediastinal and hilar LNs was a significant risk factor for recurrence of CS after treatment. Significant correlations in the SUVmax between the mediastinal and hilar LNs and the LV and RV walls were observed, whereas there was no significant correlation between the SUVmax in the mediastinal and hilar LNs and the LVEF.

Representative 18F-FDG PET images before treatment and at the time recurrence was diagnosed are presented in Figure 3.

molecular-genetic-medicine-female-patient

Figure 3: A 65-year-old female patient with recurrence 6 months after steroid therapy for cardiac sarcoidosis. Maximum intensity 18F-fluorodeoxyglucose positron emission tomography projection images before steroid therapy (left) and 6 months after steroid therapy (lower right) are presented. The left ventricular ejection fraction and maximum standardized uptake value (SUVmax) in the left ventricular (LV) wall, right ventricular (RV) wall, and the mediastinal and hilar lymph nodes (LNs) before treatment were 25%, 4.4, 1.6, and 5.5, respectively. The SUVmax in the LV wall, RV wall, and the mediastinal and hilar LNs at recurrence were 8.7, 1.8, and 2.5, respectively.

The disease progression of sarcoidosis leads to decreased mediastinal involvement and increased parenchymal involvement. Aysun Yakar et al. reported that in sarcoidosis without cardiac involvement, mediastinal LN 18F-FDG accumulation decreases as the disease progresses [24]. We hypothesize that cardiac sarcoidosis with highly remaining 18F-FDG accumulation in mediastinal and hilar LNs implies a high degree of sarcoidosis activity. 18F-FDG accumulation in the mediastinal and hilar LNs may be associated with the degree to which CS is refractory and not directly reflect cardiac dysfunction.

Interestingly, the SUVmax in mediastinal and hilar LNs at recurrence was significantly lower than before treatment, while there was no significant difference in the LV or RV wall SUVmax between the two examinations. In the CS recurrence group, a decreased SUVmax in mediastinal and hilar LNs was not a sign of treatment response. There might be a difference in the treatment response between the myocardium and LNs.

LV and RV wall SUVmax values were not independent risk factors for CS recurrence. A possible explanation on 18F-FDG accumulation in the LV wall is the passage from the active inflammatory phase to the chronic phase. CS in chronic phase does not necessarily show as high 18F-FDG accumulation in LV wall as in active inflammatory phase because of fibrosis of myocardium. Thus, it might to be difficult to evaluate disease progression of CS only by mean of SUVmax values of 18F-FDG accumulation in LV wall. With respect to 18F-FDG accumulation in RV wall, a recent study reported that increased RV 18F-FDG accumulation reflects RV pressure overload or pulmonary hypertension [25].

All patients were maintained on a low-carbohydrate and high-fat diet for a period of 6 hours, followed by fasting for 18 hours before 18FFDG injection. As this protocol is known to inhibit physiological myocardial uptake [22,23], we believe that our evaluation of myocardial 18F-FDG uptake here has sufficient validity.

The present study has several limitations. First, the median followup period was 31 months, so it lacks long-term follow-up data to confirm the outcomes of patients who responded to steroid therapy and showed no recurrence during this period. Second, the patients with CS who were analyzed were relatively few and recruited from a single center. Further studies are needed to confirm our hypotheses by evaluating the outcomes of patients with CS in multicenter studies with longer follow-up periods.

Conclusion

In conclusion, the 18F-FDG PET SUVmax in mediastinal and hilar LNs was a significant risk factor for recurrence of CS. 18F-FDG accumulation in mediastinal and hilar LNs may be a useful biomarker to predict CS recurrence and facilitate the clinical management of patients with CS.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 101
  • [From(publication date):
    September-2017 - Nov 19, 2017]
  • Breakdown by view type
  • HTML page views : 80
  • PDF downloads : 21
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljou[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords