alexa Ventricular Assist Devices in Patients with Systemic Right Ventricular Failure due to Congenitally Corrected Transposition of the Great Arteries | OMICS International
ISSN: 2155-9880
Journal of Clinical & Experimental Cardiology
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Ventricular Assist Devices in Patients with Systemic Right Ventricular Failure due to Congenitally Corrected Transposition of the Great Arteries

Sankalp Sehgal1* and Monica Ahluwalia2

1Department of Anesthesiology, Division of Cardiac Anesthesiology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA

2Division of Cardiology, NYU Langone Medical Center, New York, NY, USA

*Corresponding Author:
Sankalp Sehgal
Department of Anesthesiology
Division of Cardiac Anesthesiology
Weill Cornell Medicine, New York-Presbyterian Hospital
525 East 68th Street, P-300, New York, NY 10065, USA
Tel: (501) 615 – 5352
E-mail: [email protected]

Received Date: March 31, 2017; Accepted Date: May 04, 2017; Published Date: May 10, 2017

Citation: Sehgal S, Ahluwalia M (2017) Ventricular Assist Devices in Patients with Systemic Right Ventricular Failure due to Congenitally Corrected Transposition of the Great Arteries. J Clin Exp Cardiolog 8:516. doi: 10.4172/2155-9880.1000516

Copyright: © 2017 Sehgal S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Clinical & Experimental Cardiology


Congenitally corrected transposition of the great arteries is increasingly recognized as an adult congenital heart problem. Although early atrial switch surgical repairs resulted in improved overall survival, these patients are further predisposed to systemic ventricular failure in their fourth and fifth decades of life. Early diagnosis and management of systemic ventricular dysfunction are often challenging. Ventricular assist devices may become a mainstay endstage treatment option for these patients as a destination therapy or a bridge to heart transplantation.


Ventricular assist device; Systemic right ventricle; Adult congenital heart disease; D-transposition of the great arteries; Congenitally corrected transposition of the great arteries; Right ventricular failure; Heart transplantation


Dextro-Transposition of the Great Arteries: d-TGA; Right Ventricle: RV; Congenitally Corrected Transposition of the Great Arteries: cc-TGA; Left Ventricle: LV; Ventricular Assist Device: VAD.


Dextro-transposition of the great arteries (d-TGA) is the most common cyanotic congenital heart defect. Atrial switch operations e.g. Mustard and Senning procedures developed in the 1950s were the preferred surgical technique for d-TGA [1,2], which resulted in good short-term and immediate-term outcomes with improved overall survival [3-8]. The creation of a systemic right ventricle (RV) with the atrial switch surgical approach, however, leads to long-term complications as these patients are predisposed to RV dysfunction and failure, and pulmonary hypertension [9]. RV failure can occur in up to 44% of these patients and can be challenging to manage [9,10]. Although medical and surgical therapies target early RV dysfunction, heart transplantation remains the only long-term solution for ventricular failure. Due to limited donor availability, patients may require mechanical support devices to survive. This commentary will focus on the current clinical challenges seen in congenitally corrected transposition of the great arteries (cc-TGA), and the management of systemic RV failure with mechanical circulatory support.

Congenitally corrected- transposition of the great arteries

In d-TGA, the aorta arises from the anatomical RV, located rightward and anterior to the pulmonary artery (PA), which arises from the left ventricle (LV). This leads to a ventriculo-arterial discordance. An atrial switch operation helps by connecting the left atrium to the RV and the right atrium to the LV using a baffle, resulting in the formation of a systemic RV. This leads to atrioventricular discordance. Although the technique allows the pulmonary and systemic circulations to work in parallel, improving survival, these patients develop serious late complications [11,12]. Management of cc- TGA patients is challenging due to both complex anatomy and physiology, and limited options are available for systemic RV support.

The systemic right ventricle

RV dysfunction typically manifests in the fourth and fifth decades of life, and is one of the most common causes of death in such patients, along with fatal tachyarrhythmias. The systemic ventricular function is often difficult to assess owing to the morphological changes that the ventricle undergoes. These changes include high afterload leading to eccentric hypertrophy, enlargement of RV chamber with interventricular septal shift towards the LV, thickening and dysfunction of trabeculae, and tethering of papillary muscles [12]. This is not accompanied by augmented coronary blood flow as the native blood supply provided by the right coronary artery does not account for an increase in RV size and function. RV dilation leads to tricuspid valve annular dilatation and tricuspid regurgitation. Other cc-TGAassociated cardiac lesions can be seen in up to 80% of cases, which include conduction abnormalities, ventricular arrhythmias, pulmonary stenosis and ventricular septal defects, further worsening RV dysfunction [10,13]. Together, these factors play an important role in the development of late RV dysfunction and failure.

Medical and device therapy

Evaluation of RV dysfunction and timing of initiation of therapies are imperative. Although there are no randomized control trials in this patient population, evidence based therapies in heart failure with reduced ejection fraction have been applied, which include angiotensin converting enzyme inhibitor or angiotensin II receptor blocker and beta-blocker therapies [14-19]. There is no evidence for digoxin; however, it can be used. Caution should be used with digoxin and betablocker as this may predispose patients to bradyarrhythmias or atrioventricular nodal conduction abnormalities. Intraventricular conduction delays and ventricular dyssynchrony have been described in cc-TGA patients primarily due to systemic ventricular hypertrophy.Cardiac resynchronization therapy promotes the movement of systemic RV free wall and the septum together, which has been shown to improve RV mechanical function as well as functional capacity in a small number of patients [20,21].

Surgical repair

Anatomic correction aims at re-establishing LV as the systemic ventricle, thus protecting the deteriorating RV. A double switch (atrialarterial switch) procedure may be performed in patients with cc-TGA when RV dysfunction is reversible and is accompanied by relatively well preserved LV and mitral valve function. This procedure is not feasible in patients with significant LV dysfunction, pulmonary valve abnormalities precluding its use as a neo-aortic valve, or uncontrollable arrhythmias. Although no randomized clinical trials exist, amongst the few case studies described, anatomic correction has been shown to have good long-term outcomes with 10 and 20 yearsurvival reported as 75% and 85%, respectively [22-27]. In patients without pulmonary hypertension or LV outflow tract obstruction, the LV may not have the ability to support systemic pressures after anatomic correction. These patients undergo a two-staged surgical procedure involving PA banding for preparing the LV to withstand systemic pressures, followed by the atrial switch (Mustard or Senning) combined with either arterial switch or a ventricular level repair (Rastelli procedure). PA banding has also been used as a palliative procedure in cc-TGA, as it increases LV afterload, preventing leftward septal shift and worsening of tricuspid regurgitation and thus preserving RV function [28,29].

Mechanical circulatory support

There have been an increasing number of case reports describing support of the systemic RV using a ventricular assist device (VAD) as a bridge to heart transplant (Table 1) [30-45]. Nearly all such patients presented with symptoms of advanced heart failure or pulmonary hypertension. VAD implant improves hemodynamics by unloading the RV, allowing it to recover by regression of cellular hypertrophy, leading to a leftward shift of end-diastolic pressure-volume relationship. VAD helps improve the deranged neuro-hormonal milieu of systemic RV failure. This, along with improved end-organ perfusion, helps create a more favorable option for heart transplantation. Operative challenges associated with VAD implantation include VAD inflow placement in the systemic RV apex site to ensure adequate flow, adjustment of the length of the cannulas to the RV instead of the usual LV implantation and optimization of the connection site. VADs remain the only treatment modality in patients with advanced systemic RV dysfunction and failure awaiting a donor heart, and in those who do not qualify for a surgical correction or heart transplantation. The longest reported duration of VAD support in these patients is 988 days [41-47]

     Authors    Patients  (n)  VAD type Median  age in years       Duration of  VAD support Survival  Heart transplantation (at last follow-up)
Wilkund et al. [30] 1999 1 Heartmate I 15 n/a 1-Jan Awaiting
Stewart et al. [31]2002 2 Heartmate  I 15, 28 12 weeks, 8 months 2-Feb n/a
Gregoric et al. [32] 2007 1 Heartware 53 8 months 1-Jan Transplanted
George et al. [33] 2009 1 Heartmate  II 17 13 months 1-Jan Transplanted
Netuka et al. [34] 2009 1 Heartmate  II 30 n/a n/a n/a
Joyce et al. [35]2010 3 DeBakey VAD ×1, Heartmate  II ×1 33 n/a n/a n/a
Akay et al. [36] 2012 1 Heartmate II 34 18 months 1-Jan Awaiting
Jacobs et al. [37] 2012 1 Circulite 49 10 months 1-Jan Awaiting
Mohite et al. [38]2013 1 Heartmate  II 53 n/a n/a unknown
Huang et al. [39] 2013 1 Heartware 63 24 months 1-Jan n/a
Neely et al. [40]2013 1 Heartmate  II 41 Destination Therapy n/a Not eligible
Shah et al. [41]2013 6 Heartmate I ×1, Heartmate  II ×3, Jarvik 2000 ×1, Heartware×3 41 (23 - 54) 171, 261, 27, 988, 577, 493 days 6-Apr 1/6 Transplanted, 1/6 Awaiting
Peng et al. [42]2014 7 Heartware 36 232, 64, 685, 313, 640, 190, 30 days 7-May 3/7 Transplanted, 2/7 Awaiting
Maly et al. [43]2015 5 Heartmate  II 31.5 ± 1.8 284 ± 177 days 5-Mar 3/5 received
Sehgal et al. [44]2015 1 Heartware 43 4 months 0/1 Not eligible
Tanoue et al. [45]2016 1 Jarvik 2000 60 12 months 1-Jan Awaiting

Table 1: Summary of cases of cc-TGA patients who underwent ventricular assist device implantation for systemic right ventricular support.


RV failure in patients with cc-TGA remains an emerging adult congenital problem, and is challenging to manage. Medical and surgical therapies may help with early RV dysfunction, but heart transplantation remains the only long-term solution for systemic ventricular failure. Due to limited donor heart availability, mechanical support with VADs may become a routine part of end-stage heart failure therapy for such patients. Hence, VAD implant is a life-saving measure that can delay the progression of systemic ventricular failure and can be used to improve morbidity and mortality in patients with cc-TGA.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 1049
  • [From(publication date):
    May-2017 - Apr 21, 2018]
  • Breakdown by view type
  • HTML page views : 990
  • PDF downloads : 59

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version