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Abstract

The purpose of this paper is to obtain some inequalities and certain bounds for the dimension of the c-nilpotent
multiplier of finite dimensional nilpotent Lie algebras and their factor Lie algebras. Also, we give an inequality for the
dimension of the c-nilpotent multiplier of L connected with dimension of the Lie algebras y4(L) and L/z,(L). Finally,

we compare our results with the previously known result.
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Introduction

All Lie algebras referred to in this article are (of finite or infinite
dimension) over a fixed field F and the square brackets [, ] denotes the
Lie product. Let 0>R->F->L->0 be a free presentation of a Lie algebra L,
where F is a free Lie algebra. Then we define the, c-nilpotent multiplier
cx>1,tobe

c (RmYchl(F))
M( )(L B Yc+l(R’F)

where Yci1 (F) is the (c+1)-th term of the lower central series of F, Y, (R,
F)=1andy,_ (R,F)=[y (RF),F]. Thisisanalogousto the definition of the
Baer-invariant of a group with respect to the variety of nilpotent groups
of class at most ¢ given by Baer [1-3] (for more information on the Baer
invariant of groups). The Lie algebra M (L)= (RmFZC? /[R,F]=M(L)

is the most studied Schur multiplier of L [4,5]. It is readily verified that
the Lie algebra M(c) (L) is abelian and independent of the choice of
the free presentation of L [6]. The purpose of this paper is to obtain
some inequalities for the dimension of the c-nilpotent multiplier of
finite dimensional nilpotent Lie algebras and their factor Lie algebras
(Corollary 2.3 and Corollary 2.5). Finally, we compare our results to
upper bound given [6]. First, we show that for each ideal N in L, there
is a close relationship between the M(c) (L)and M(C) (L/N)

s

Lemma 1.1. Let L be Lie algebra with a free presentation
0->R>F>L~0. If S is an ideal in F with N =S/R,, then the following
sequences are exact:

RN Ve+l (S’F)
Ve+1 (R’F)

(©) () NNve41 (L)
- MY(L) » MY(L/N) - ren (V) - 0,

Mo -

(i) 0 - (), ®°(L/L2)b S MO@L) 5 MEWLIN) 5 Ny (L) - o

cas . C _
under the condition that N is central, N® M —N®M®.j.®M and
(N)ab ~N/N2. c—times

Proof. We prove only part (ii). Since N is central, [S,F]c R and

Tesl (S, 2t R) SYert (SR)+ 741 (R,Fz) ¥er1 (RF) + 741 (R [FF]) € 741 (R,F).
Now, we have the following homomorphism

R mYc-H (F)
Yo+l (R’F)

such that Imo= Y41 (S F)/v¢41 (R, F) . Now the result holds by part (i).

o S/R®°F/(F2+R)—>

The following corollary is an immediate consequence of Lemma
1.1, which gives some elementary results about dimension of the
c-nilpotent multiplier of finite dimensional Lie algebras see corollary
2.2 of Salemkar et al. [6].

Corollary 1.2. Let N be an ideal of Lie algebra L. Then
(i) dimm(®) (L)+dim(NNyep (L)) = dimM(®) (L/ N)+dim(y°+17(s’F)J,
Ye+l (R, F)
Where E,S,R are defined in Lemma 1.1.

(ii) dimM(®) (L)+dim(NNyeq (L)) < dimM©) (L/N)+dim[(N)ab & (L/1? )abj

Suppose that L is generated by n elements. Let F be a free Lie algebra
generated by n elements and L =F/R Witt,s formula from Bahturin et
al. [7] gives us

Dim v4(F) 741 (F)=5 D p(m)n
m|d
where p(m) is the Mobius function, defined by u(1)=1, u(k)=0if K
is divisible by a square, and u(pl---ps)=(—1)s if Pps---op, are distinct
prime numbers.

2

:ln (d)’

Lemma 1.3. Let L be an abelian Lie algebra of dimension n. Then
dim M(c) (L)=1y(c+1).In particular, dim M(L)= %n(n -1).

Proof. Consider a free Lie algebra F freely generated by n elements.
By Witt’s formula, F/F?is an abelian Lie algebra of dimension n, and
so it is isomorphic to L. Hence dim m(©) (L)=dim (ve11 (F)/ ves2(F))»
which gives the result.

Let L=7;(L)27v2(L)>...27¢ (L) D vc41 (L) =0 be thelower central
series of nilpotent Lie algebra, L. L is said to have class c if ¢ is the least
integer for which Y41 (L) =0. Furthermore, if dim vj(L)/vjs (L) =1
for j=2,3,....,c and dimL/y,(L)=2, then L is said to be of maximal
class c. Additionally, let 0=Zy(L)cZ(L)cZ,(L)c...cZ.(L)=L
be the upper central series of nilpotent Lie algebra L. If L is of maximal
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class, then Z;(L)=v._j;1(L) foro<i<c.
By the above notation we have the following corollary.

Corollary 1.4. Let L be a finite dimensional nilpotent Lie algebra of
maximal class (c+1), then

dim M) (L) < dim M) (L/Z(L))+2° -1

Proof. Using Corollary 1.2(ii) with N= Z(L), we get

dim M()(L) +dim Z(L) = dim M©)(L)+1= dim M) (L/ Z(L))+(1)2°-
Discussion and Results
2 Bounds on dim M*) (L)

Let L be a finite dimensional nilpotent Lie algebra of class d >
2. First, we give an inequality for the dimension of the c-nilpotent
multiplier of L connected with dimension of the Lie algebras 4 (L)
and L/Z4 (L) (Corollary 2.3) and some inequalities for the
dimension of the c-nilpotent multiplier of finite dimensional nilpotent
Lie algebras will be given. For this purpose, we need the following two
lemmas.

Lemma 2.1. Let H and N be ideals of Lie algebra L and
N=Nj 2N ..., a chain of ideals of N such that [N;,L] = Nj,; for
allI=1,2,.... Then

[Ni,[H,j LllcN; for all i, j.

+j+l
Proof. We have
[NGLH 1 LIS [N, L1 L]]
CIIN.[H, ; L1 L1 +[[N;, LLIH, ; L]
SINigjs, L1+ [Ny 1,[H, 5 L]
SN2+ Nigj2 =N
Now, the assertion follows by induction on j.

Lemma 2.2. Let L be a finite dimensional nilpotent Lie algebra

of class d > 2 . Let 0>R>F>L>0 be a free presentation of L, then
L
Zga(L)

Yen1(7a(F)+ R, F) s 2 homomorphic image of 7d<“®ﬁ®'“®
7(;+1(R9F)

c—times

Proof. Put 7 (L)=T /R for 0<k<d. Now consider the
following chain

S=Td Q...QTk QTk—l Q...QTI QTO =R.
Since [T, ,F]c T, then by Lemma 2.1,
[Ta-1,[a—2 (F).FJlc Ta-1-(d-2+41)=To =R.
Therefore,

Pa(F)+ R Ty, s Ty 1€ ya (F) Ty —15e s Ty 1 1+ [R Ty 1, Ty 1]
R S

c—times

c—times c—times

clraE)Ty1s Ty 1+ Ve (R F)
Ll otd-l

c—times

<7y, F 1 vaa1 (B Ty -5 Ty ]
d=breld-

(c—1)—times

H Ty 1o a—a (F), F1LFL Ty g5 Ty 14 Ve (R F)
L=l otd-l

(c—1)—times

T2, 741D, Ty g5 Ty 11+ Vo) (R F)
d-reldl

(¢—1)—times

Ty, )Ty 1, Ty 41+ 7.1(RF)
b nfd-l

(c—1)—times
S Vet (R’F )
The latter inclusion gives the following epimorphism

| ZenGa )+ RE)
Ve+l (RaF)

raF)+R F F
R Taa Ty

c—times
+R,A+Ty s fo Ty (X, flo s fo ]+ Ver1 (R F).

Corollary 2.3. Under the assumptions and notation of the above
Lemma, we have

dim MU(L) + dim (v4(L)+ve+1(L))< dim M(C)(L/yd(L)) +

im im L i
aim 1) ain 75
(F)+R

Proof. In Corollary 1.2(i), taking N =1v4 (L) _Yal)r R
Lemma 2.2, we have R

. Now by

dim M (L) + dim (v4(L)+7e, (L)) =dim M(°)(L/yd(L))+dim[M]

Yes1(R.F)
L L
<di L® ®---®
im(ract Za (L) qu(L))
c—times
+dim M) (L /y4(L))

C
L

g c ; L)| dim| ——— .

= dim M(®) (L /7, (L)) + dim Ya( ){ (zd_l (L)H

In following, we give another an inequality for the dimension of
the c-nilpotent multiplier of finite dimensional nilpotent Lie algebras.

Theorem 2.4. Let L be a finite dimensional nilpotent Lie algebra of
class > 1, then

dim M (© (L) <dim M (L / 12) + dim [2[dim(L / Z(L)) - dim(L / Z(L))*]¢ —dim(y‘.H(L)).

Proof. We use induction on the class of L. If L is of class 1,
then L?= 0 and the result holds. Assume the result for nilpotent
Lie algebras of class to be less than d and let L have class m=

d-1. Note that m(L)eZ(L). L <Zui(L), (L/1m(L)’ =L /7m(1)  and
Z(L)/¥m (L) € Z(L/¥m (L)). Forconvenience,let A =(L /vy, (L))/ Z(L/ 1 (L))
and B=L/Z(L)=(L/vy(L))/(Z(L)/m(L)). Since A is a homomorphic image
of B, it follows that dimA/A” <dimB/B?. By induction,

dimM(©) (L /7, (L)) < dimm(©) ((L/ym(L))/(L/ym (L))z)
+dim(L /v (L)) [dim(A / AzﬂC —dim(7e41 (L/7m (L))
<dimm(©) (L/22)dim(L? /oy (L))[dim(B/Bz):‘c —dim(yes1 (L/7m (L)))-

By Corollary 2.3,
dimM(®) (L) < dimM() (L /5, (L)) + dim (v (L)) dim(L/ Zp_ (L))]

- dim(ym (L) N Ye+l (L))
Also, dim(L/Zpy 1 (L)) <dim(L/ (1> +Z(L)| = dim(B/ B?)

C
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Therefore,

aimMi(®) (1) < im M) (L/12 ) dim (12 /1 (L))[dim(B/Bz)T —dim(yest (L 7m (L))

+dim(y (L))[dim(B / }32)}C ~dim (Y (L) N yes1 (L))
<dimM(®)(L/12) + dim1? [dim(B / Bzﬂc —dim (7.1 (L)).

Since dim(B / Bz) < dim(L/ Lz), we obtain:

Corollary 2.5. Under the assumptions and notation of the above
Theorem, we have

dimM(®) (L) < dimMm(©) (L / L2)+ dimL2 [dim(L / LZ)T —dimyg,q (L).

Now, we compare our results to upper bound given [7], when c = 1.

Theorem 2.6. Let L be a finite dimensional nilpotent Lie algebra of
class m and d=d(m). Then

dimM(L)sild(kJrl).
k=1

Example 2.7. Let F be a free Lie algebra on 2 generators and
L=F/F>. Then L is a Lie algebra of 2 generators and class 2. Thus

dimL/L* =1,(1)=2,dimL?/L* =1,(2) =1 and dim L=3. By Theorem 2.6,
2
A . 1 I
dlmM(L)S212(J+1)=12(2)+12(3)=1+§(p(1)23+u(3)2)=1+§(6):3,
j=1

Note that L is a finite dimensional nilpotent Lie algebra of maximal
class (1 + 1) and Z(L)=L2 By Corollary 1.4 and Lemma 1.3,

dimM(L)<dimM(L/Z(L))+1 :dimM(L/L2)+l =l (2)+1=1+1=2.
Also, by Corollary 2.5,
dimM(L) < dimM(L/ 12) + dim L[dim (L/12 )| - dim L? =15 (2) +1(2) =1=2,

Example 2.8. Let F be a free Lie algebra on 2 generators and

L=F/F*. Then L is a Lie algebra of 2 generators and class 3. Thus

dimL =5, diimI? =3 and dimL /2 =1,(1)=2. By Theorem 2.6
3
dimM (L)< D T (j+1)=1(2)+ L (3)+ L (4)

j=1

:1+2+i(u(1)24 +1(2)2% +u(4)2)

1
~1+—(16-4)=6.
+5(16-4)

Also, by Corollary 2.5,

dimM(L) = dimM (L /L? )+ dim 1 dim(L /L7 |- dimL? =15 (2) +3(2) -3 =4,

In this two examples, we see that our results give two better upper
bounds for dim(L) than the previously known result.
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