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Abstract

Adult stem cells present in various tissues play key roles in tissue repair and regeneration upon injury. The
inflammatory responses associated with tissue damage that are caused by physical, chemical, infectious, nutritional
and genetic factors activate stem cells to proliferate and differentiate. The severity and duration of the injury
influence the outcome of tissue repair. Viral diseases are major public health problems and over 500 million people
worldwide are affected with viral hepatitis. Virus infection of acute or chronic nature could disrupt the tissue
homeostasis by altering cell function and architecture. Little is known about the effect of viral diseases on resident
stem or progenitor cell population during tissue repair and the regeneration process. This review summarizes the
liver-specific inflammatory and healing responses to injury and provides a detailed overview of the cellular and
molecular basis of tissue regeneration following viral diseases. Understanding the behavior of resident stem or
progenitor cells in response to tissue injury caused by infectious agents such as viruses can allow for the
development of small molecule and cell-based therapy for tissue regeneration.
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Introduction
Living organisms evolved to repair or regenerate the injured tissues

in order to enhance the rate of survival and fitness. Tissue injury is
caused by physical, chemical, nutritional, genetic and infectious
etiologies and, depending on their nature and severity, can lead to
various healing responses at the cellular level. The scourge of viral
disease outbreaks at pandemic and epidemic proportions shaped our
evolution. Currently, over 500 million people are affected with viral
hepatitis and an estimated 35.3 million are infected with human
immunodeficiency virus (HIV) [1-4]. Besides, morbidity and mortality
associated with seasonal influenza exert huge burden on the healthcare
system and have tremendous impact on the economy [5].
Understanding host-pathogen interaction is crucial for counteracting
viral diseases by development of vaccines and direct acting antiviral
agents. Viral pathogens can be transmitted by person-to-person
contact (aerosols, touch, contaminated blood and bodily fluids), food,
water, arthropod vectors and inanimate objects. Upon entry to the
host organism, viruses reach the target organs and establish localized
or generalized infection.

Viral tissue tropism is determined by the cellular expression of viral
entry receptors and host factors critical for completing the viral
growth cycle. The liver-specific pathogen, hepatitis C virus (HCV)
envelope proteins (E1, E2) have been shown to directly or indirectly
interact with hepatocyte surface receptors including CD81, LDL
receptors (LDL-R), scavenger receptor - B1 (SR-BI), and claudin1 [6].
The influenza virus hemagglutinin (HA) glycoprotein binds to cell
membrane sialic acid for entry into upper respiratory tract cells [7].
Non-enveloped viruses, coxsackievirus B (CVB) and adenovirus-2/5

enter through the coxsackievirus and adenovirus receptor (CAR) [8,9].
Viral entry occurs through pH-dependent or pH-independent
endocytosis pathway [10]. Cellular innate immune factors, such as
toll-like receptors (TLRs), and retinoic acid inducible gene I (RIG-I)
sense the viral pathogen associated molecular pattern (PAMP), which
results in activation of IFN-alpha/beta pathways [11,12]. Inflammatory
response and innate immune factors are key drivers for eliciting
specific T- and B- cell mediated immune response.

Inflammation is the general response that occurs in many different
organ systems in response to tissue/cell injury. It encompasses the
combined effects of vascular changes and cellular reactions that have
the collective purpose of removing the injurious stimuli and initiating
the healing process [13]. Viral-mediated cell injury elicits acute and/or
chronic inflammatory responses. Acute inflammation refers to
inflammation of relatively short duration primarily characterized by
the excretion of fluids and plasma proteins and the emigration of
neutrophils to the site of injury by chemoattraction, which engulf
necrotic tissue and pathogenic microorganisms [14-17]. Hepatitis A
virus and influenza virus can cause acute infection, resulting in an
acute inflammatory response [18,19]. Chronic inflammation, on the
other hand, refers to inflammation of relatively long duration, and is
characterized by the presence of macrophages and lymphocytes, and
the extensive proliferation of blood vessels, tissue necrosis, and
fibrosis/scar tissue formation [13]. Chronic disease can result from
infection with hepatitis B virus, HCV, and herpes viruses (Epstein-
Barr virus and cytomegalovirus). Depending on the nature of the viral
pathogens, the infected cell’s fate can be non-lytic, lytic, or cancerous
transformation. Viral infection may cause tissue injury by triggering
auto-immune responses. Pathogenesis of auto-immune diseases such
as multiple sclerosis and type 1 diabetes mellitus has been linked to
Epstein-Barr virus and enterovirus infections, respectively [20,21].
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After inflammation, the healing process occurs either by
regeneration, repair or a combination of both. Complete regeneration
occurs in labile tissues that continuously divide such as the epithelia of
the skin, gastrointestinal tract, and the hematopoietic system [22-24].
Viral enteritis caused by rotavirus, astrovirus and norovirus can be
self-limiting and recovery of intestinal villus epithelial cells can occur
[25-27]. Recovery and regeneration of upper respiratory tract lining
epithelium takes place following common cold caused by rhinoviral
infection [28]. Full functional regeneration can also occur in minor,
non-chronic injuries to quiescent tissues such as that of the liver.
Regeneration entails the proliferation of cells and tissues to
functionally replace lost/damaged structures, and requires that the
basement membranes of the extracellular matrix are intact. In cases in
which permanent damage to the extracellular matrix is sustained, the
repair process is initiated through the compensatory formation of
nonfunctional scar tissue via collagen deposition. This occurs in
chronic liver inflammation resulting in liver fibrosis/cirrhosis and in
deep skin wounds [23,29]. As with many other processes in the body,
our capacity for cellular regeneration declines with age. Understanding
the complex interactions of viral infection and various host cells
(inflammatory, immune and stem cells) at the systems biology level
can provide new avenues to combat viral pathogens. Figure 1 presents
the cell and molecular players involved in host-pathogen interaction.
Though viral diseases affect various organs, we limit the scope of this
review to the liver. The following sections focus on the stem cell niche,
viral-mediated cell injury, and the repair and regeneration processes of
the liver.

Figure 1: Schematic illustration of cell and molecular components
involved in host-pathogen interaction. Viral-mediated injury to
target cells elicits inflammatory response. Inflammatory cytokines
and cells (neutrophils and macrophages) orchestrate the events of
clearing dead cells, removal of pathogen and tissue remodeling
which pave the way for healing by repair or regeneration. Tissue-
specific stem and progenitor cells receive activation signals for
proliferation and differentiation to become functional
parenchymatous cells. Viral-specific immune response is mediated
by antigen presenting cells, T- and B –lymphocytes.

Hepatic Cellular Composition and Stem Cell Niche
The liver, the largest metabolic organ, carries out both exocrine and

endocrine functions. The functional compartments of the liver
encompass the hepatic lobule and portal triad. The portal triad
consists of the portal vein, hepatic artery and bile duct. From the

portal triad, blood flows through the liver sinusoidal spaces where the
nutrients, metabolites and waste products are transferred to the
hepatic plates across the endothelial fenestrae (Figure 2). Sinusoidal
blood drains into the central vein present in the hepatic lobule.
Periportal and pericentral hepatocytes execute different but
complementary metabolic roles depending on oxygen zonation. The
parenchymal cells which make up approximately 70% of the whole
liver are the hepatocytes which along with biliary epithelial cells,
originate from embryonic endoderm. Moreover, the stromal cells,
hepatic stellate cells (HSCs; Ito cells), Kupffer cells (resident
macrophages) and sinusoidal endothelial cells that constitute the liver
have a mesodermal - embryonic origin. Hepatic stellate cells reside in
the space of Disse (space between hepatocytes and sinusoidal
endothelium) in adult liver and are identified by the expression of
desmin and glial fibrillary acidic protein in the quiescent state [30-32].

Figure 2: Cartoon showing the cell and molecular basis of liver
injury, regeneration and repair during acute and chronic hepatitis.
(A) Normal architecture of a segment of liver lobule is shown.
Blood from hepatic artery (HA) and portal vein (PV) do flow
through the sinusoidal spaces (SS) to central vein (CV). The micro-
architecture of the bile duct (BD) and hepatic plate adjacent to
sinusoidal space is shown. Endothelial cells lining sinusoidal space,
Kupffer cells, quiescent hepatic stellate cells (HSC) in the space of
Disse (SD) and hepatic progenitor cells (oval cells) are depicted.
Canal of Herring (CoH) stem cell niche is presented. (B) Acute
injury can lead to localized or generalized cellular degeneration,
apoptosis and necrosis. Cell injury induces acute inflammatory
response resulting in activation of Kupffer cells and recruitment of
additional inflammatory cells (neutrophils and monocytes) to site
of injury. Chemokines, inflammatory cytokines, and growth factors
secreted by Kupffer cells stimulate the stellate cells to initiate the
tissue remodeling process. Activated stellate cells produce collagen
and extracellular matrix proteins. The mature hepatocytes, hepatic
stem cells in the CoH and resident oval cells proliferate and help
complete regeneration in some cases. If the disease causing agent is
not removed, the chronic liver injury ensues. (C) Chronic hepatitis
and fibrosis characterized by excessive accumulation of collagenous
fibers, loss of parenchymal cells, and presence of mononuclear
infiltrates. At this phase, continuous degeneration and regeneration
processes occur. Pathology associated with chronic hepatitis can be
reversed once the disease-causing agent is removed.
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In the adult liver, bipotential progenitor/stem cells called oval cells
have also been reported [33]. The oval cell population was first
observed in the rat liver and has been shown to have originated in
biliary ductules called the canals of Hering, which are known to
compose the principal stem cell niche in adult livers [34-36]. Oval cells
express cytokeratin 19, CD90/Thy-1, CD34, CD133 and c-kit markers
which some are shared among the hematopoietic progenitor cell
population [33,37]. Self-renewing liver stem cells marked by Wnt
target gene Lgr5 have been described in murine liver [38]. Using the
human embryonic stem cell (hESC) differentiation system, a novel
hepatic progenitor cell population expressing the KDR (VEGFR2/
FLK-1) receptor was identified and subsequently verified in both
human and mouse livers [39].

Liver Injury, Repair and Regeneration Processes
Throughout history, the liver has been known as the regenerative

organ which dates back to Greek mythology with the well versed Blood
of Prometheus. Nonetheless, its remarkable capacity for regeneration
is best illustrated by recovery after partial hepatectomy. Restoration of
the resected lobules has been attributed to the proliferative capacity of
adult hepatocytes, which restore liver mass and function in a process
called compensatory growth [40-42]. In these acute phases of injury,
the hepatocytes are able to enter the cell cycle through a combined-
paracrine cascade of induced cytokines and growth factors such as
HGF, EGF, TGF-α, TNF-α, u-PA (plasminogen activator, urokinase)
and IL-6, which are mainly generated by the surrounding non-
parenchymal cells that constitute the liver[40,43-47]. Higher levels of
HGF, CXCL12/SDF-1, and IGF-1 were present within the first 6 hours
in the plasma of patients who underwent partial hepatectomy [48].
HGF and its receptor cMET are involved in embryonic liver
development, hepatocyte differentiation and liver regeneration
[49-52]. Beta-catenin signaling pathway has been shown to be critical
for liver regeneration [53]. Recent evidence suggests that IL-22 and
IL-17 secreting γδT lymphocytes promote regeneration of liver [54].
The growth factors stimulate hepatocytes into a primed state of cell
division (from G0 to G1) and proceed to enter the cell cycle from the
dormant, quiescent state and proliferate. In mild injuries, replicating
hepatocytes, biliary ductule cells and stromal cells regenerate the liver
completely.

When the remarkable regenerative capacity of the hepatocytes in
response to severe injury has been exhausted, the contribution of the
bipotential progenitor cells, oval cells, becomes apparent. Biological
factors IL-6, OSM, TGF-α, HGF, and FGF have been shown to aid in
the proliferation process. In acute or chronic liver injury, the cluster of
proliferating liver progenitor cells can be observed histologically as
ductular reactions [55,56]. During liver injury, progenitor cells from
bone marrow and circulating blood can be attracted to site of injury.
CXCL12 is involved in the attracting and homing of stem and
progenitor cells through binding to the G-protein coupled receptor
CXCR4 from circulation to the target organ or site of inflammation
[57-60].

During persistent, long-term inflammation caused by chronic
hepatitis B/C viral infection, alcohol abuse and the massive
accumulation of toxic chemical substances the compensatory liver
regeneration process by the parenchyma becomes worn out and can
result in the compensatory replacement of damaged liver cells with
abnormal collagen-rich connective scar tissue, a process called fibrosis
(Figure 2). Upon liver injury, the quiescent hepatic stellate cells
undergo trans differentiation into activated myofibroblast-like cells

[expressing α-smooth muscle actin (α-SMA)] that play a key role in
fibrogenesis [30,61,62]. TGF-β secreted by inflammatory cells and
Kupffer cells induce activated HSCs to produce collagen. In the
cirrhotic liver, the extracellular matrix (ECM) component is
remodeled into fibrillar type I collagen. The balance between the
activities of ECM remodeling enzymes, liver interstitial collagenases,
matrix metalloproteinases (MMPs) and tissue inhibitor of matrix
metalloproteinases (TIMPs), controls the volume of deposited collagen
[63]. During fibrosis, excessive intermolecular cross-linking of
collagen molecules occurs, which has the effect of stabilizing the
collagen deposits in the fibrotic lesions; thus, contributing to greater
rigidity and proliferation of collagen-rich fibrotic scar tissue. As more
of this scar tissue forms and accumulates, the normal architecture and
function of the liver can be disrupted, which can result in irreversible
scarring/regenerative nodule formation in what is called cirrhosis.
Cirrhosis can cause hepatocellular carcinomas and also impair portal
vein blood flow into the liver, resulting in the formation of portal
hypertension and ascites. Hepatocytes and HSCs produce IGF-1 that
increases liver regeneration after injury and reduces liver fibrogenesis
[64]. The following section briefly describes viral hepatitis that shares
many of the cellular and molecular aspects of acute and chronic
inflammatory responses delineated earlier.

Viral Hepatitis
The hepatitis C (HCV) virus is a member of the Flaviviridae virus

family, and is a small (about 50 nm in diameter), positive sense,
enveloped, single-stranded RNA virus. HCV is transmitted by
exposure to infected blood via sharing contaminated needle and blood
transfusions. In around 80% of cases, HCV infection becomes chronic
[36,37]. Upon exposure, HCV replicates mainly in hepatocytes and a
small proportion in mononuclear cells, biliary epithelial cells and
sinusoidal lining cells [65]. The body’s immune response in the
majority of patients (around 80%) is ineffective in eliminating the
virus, which leads to chronic inflammation of the liver. The
inefficiency of the immune response to HCV has been linked to a weak
CD4+ and CD8+ T-cell response during the acute phase likely due to
the immuno-suppressive effects of hepatitis C viral factors such as
core, NS3 and NS5A [32,34].

Hepatitis B Virus (HBV), a member of the Orthohepadnavirus
genus of the virus family Hepadnaviridae, is an icosahedral, lipid-
enveloped virus containing a circular, partially double-stranded DNA
genome (full-length negative strand and shortened positive strand)
with a length of about 3,200 base pairs [34,38]. There are 8-9 distinct
HBV genotypes that have been identified and labeled as genotypes A-I
[38]. HBV is transmitted through contact with blood, semen, and
other bodily fluids of an infected individual. The most common routes
of infection are intravenous drug use, sexual contact, and perinatal
transmission [38-41]. HBV, which targets hepatocytes, is known to be
non-cytopathic. The main source of hepatocyte/liver tissue damage is
the host immune response and the inflammation that results [34].
HBV infection can cause both acute and chronic infections. HBV
infection in adults usually results in only acute hepatitis; while,
perinatal HBV infection almost always results in chronic hepatitis. As
with most other viruses, immunocompromised individuals are at
higher risk for developing chronic hepatitis B [38-41].

Hepatitis A virus (HAV), a RNA virus (genus: Hepatovirus, Family:
Picornaviridae), causes acute hepatitis and the infection is mostly self-
limiting [66,67]. Hepatitis D virus (HDV) is a viroid-like agent
consisting of a circular RNA genome. HDV replication takes place in
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cells already infected with HBV since HDV uses hepatitis B surface
envelope proteins to package its RNA genome. Co-infection may
result in fulminant hepatitis. In hepatitis B and C, ductular reactions
indicating proliferation of hepatic progenitor cells in the portal area
have been reported [55,68,69]. In hepatitis C, cytokeratin 7 expressing
progenitor cells in ductular reactions were correlated with fibrosis
[68]. The viral-mediated biological effect on the progenitor cell
population is unknown.

Perspectives
This review provides an in depth analysis of the key cell and

molecular basis of the viral infection, inflammation, repair and
regenerative processes of liver. New tools and technologies developed
in the recent years usher an exciting era of investigation on stem cells
and infectious diseases. Adult stem cells and progenitor cells are a very
minor population in a tissue or organ, which poses the challenge of
studying the pathophysiological effect of viral infection on stem cells.
Recent discovery of induced pluripotent stem cells (iPSCs) provides an
unlimited supply of defined organ-specific progenitor and mature cells
which can be a very useful tool for modeling viral infections. Lineage
tracing studies in animal models following viral infection can allow
tracking of progenitor cell population in action during inflammatory
and healing processes.

Upon injury activation of innate immune factors, DNA repair
machinery, and inflammation pathways orchestrate the cell fate
decision of apoptosis, cell survival, proliferation and differentiation to
limit tissue or organ damage. Tissue remodeling and regenerative
processes are greatly influenced by the severity and duration of
exposure to the injurious stimuli. Massive tissue necrosis observed in
diseases like fulminant hepatitis C/B and influenza pneumonia can
lead to organ failure without having sufficient time for the regenerative
process to start. On the other end of the disease spectrum, chronic or
repeated long-term exposure of tissues to injurious agents in
conditions such as chronic hepatitis C can provide ample chances for
tissue regeneration to take place. However, in chronic conditions,
exhaustion of stem cells and loss of functional parenchymatous cells
lead to fibrous scar tissue formation. In order to facilitate tissue repair
or regeneration through stem cell therapy or allow body’s natural
ability to heal, the disease causing agent has to be removed.
Combinatorial therapies consisting of direct acting anti-viral agents
and organ-specific stem cells have the potential to greatly improve the
clinical outcomes. Further investigation can help assess the stem cell
role in degenerative viral diseases and identify a therapeutic window
for cell therapy interventions.
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