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Introduction
In last years, in physics studied the nonlinear interaction of light 

which can mimic the physics at so called an event horizon. As shown 
in a study [1], this analogue arises when a weak probe wave is unable 
to pass through an intense soliton, despite propagating at a different 
velocity”. These dynamics arises as a soliton-induced refractive index 
barrier. In all paper this barrier characterize the volume optic properties 
of a fibre with linear boundary conditions. In this paper, we consider 
the opposite problem when the optical medium is ideal or linear, but 
boundaries of the medium have the nonlinear optic properties, and 
describes, for example, the all-optical transistor [2]. It may be also a 
case when a bright soliton is passing through the soliton. In this case, 
the intensity of light depends on the fibre refractive index (that is take 
place the Kerr effect). Thus, the soliton creates a moving refractive 
index perturbations which passage through the another soliton [3-
6]. This interaction between such surface solitons plays the mane 
role of distributions of the light in the linear medium with nonlinear 
surface interaction. Thus for the ideal medium the main role plays 
the fibre surface nonlinear refractive index. In a study [2], it has been 
mimicked two spectral modes of solitons when the mode-locked laser 
diode generate picosecond solitons. This generation will be described 
as a functional boundary conditions generated these solitons. The 
simulation is described by the hyperbolic type equations which models 
an evolution of amplitude of electric field A(x, t) [7]. These equations 
depends on the dispersion coefficients and on the nonlinear interaction 
coefficient of the fibre, depending on A(x, t), where x is a coordinate of a 
beam and t is the time. Of course, these equations must be follows from 
the Schrodinger type of equations. Thus phases and amplitudes of lights 
describes by systems of linear quantum equations. Boundary condition 
describes surface beams in an optical resonator with feedback. Thus the 
equations are linear without interaction potential, but the feedback is 
modeled by the nonlinear boundary conditions.

The problem of the coherent interaction of impulses in a nonlinear 
medium is well-known. As noted in a study [8],” an interaction may be 
utilized for the transmission of information, for frequency conversion, 
and for the description of processes which proceed in more intensive 
fields and at times shorter than to relaxation time” [9].
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where ψ:=ψ (x; t): R2 → C, where C is a complex space, is an unknown 
function,   is the Planck constant. Let us divide the two parts of 
equation on a value mv2, where m is the mass of particles, v is their 
velocity and p=mv is an impulse. Further, we introduce t t τ= , τ  
is a relaxation time of a wave function to some equilibrium, and we 

consider a dimensionless constant h λ
ντ

= . As a result, we obtain the 
dimensionless equation:
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We can consider the functional two-point boundary conditions

( ) ( )0, ,t l tψ θψ=                   (3)

with the real or complex parameter θ. For these conditions there is a 
theorem of existent and uniqueness of solutions the problem [10-13]. 
But our aim is instead of the linear boundary conditions to consider 
nonlinear conditions

( ) ( )0, , , ,t h l t hψ ψ= Φ                        (4)

where Φ: C → C is nonlinear structural stable map, with additional 
initial conditions

( ) ( )0,0, , , 0 1x h x h xψ ψ= ≤ ≤                   (5)

where h>0 is a small parameter. We assume that conditions

( ) ( ) ( ) ( )0,0, , ,0, , 0,l, , l,h l h h l hψ θ ψ ψ θψ= Φ  = Φ                      (6)

and the similar conditions for second derivatives at points (0, 0) and (0, 
0) are satisfied. This ensures the existence of solutions of C2[(0, l)×[0, 
t0)] - class. Of course, real and imaginary parts of the map Φ are from C2 
- class. This ensures that the map Φ: C → C is structural stable. It means 
that a corresponding map G: R2 → R2 is structural stable. It means that 
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Abstract
An initial value boundary problem for the linear Schrodinger type equation with nonlinear functional boundary 
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the problem to a system of integro-difference equations. Further, it is proved that for large time integro-difference 
equations tends to a system of difference equations asymptotic of which is known. It has been done application to 
boundary problems of nonlinear optics, where impulse periodic distributions of light are interpreted as white and 
black solitons.
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and ( )1 1: ϕΦ = Φ  Then general case can be treated similarly

Thus for the Hamilton-Jacobi equation we have the boundary 
condition

S(0,t)=Φ1 [S(l,t)] (18)

And, for the transport equation
2

2 0Sp
t x x
ϕ ϕ ϕ∂ ∂ ∂
+ + =

∂ ∂ ∂
                   (19)

We have the boundary condition

( ) ( )20, ,t l tϕ ϕ= Φ                         (20)

Here maps Φ1, Φ 2 ∈ C1(I → I) are structural stable, where I is an 
open closed interval. The structural stable maps form an open dense 
subset [5].

In order to solve equations, we use the method of characteristics. 
To do this, we consider the Hamilton system of ordinary difference 

equations with hamiltonian ( ) 21
2

H p p=  as

,H Hx p
p x
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= = −
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                   (21)

With the initial condition,

( ) ( ) ( )0 00 , 0 Sx x p x p
x
∂

= = − =
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                     (22)

For the given constant p the function x:=x(p,t) is the solution of 
equation
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S x t
p

x
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− =
∂

                   (23)

Where p can be considered as additional coordinate in (x,p,t)-
space.

Interpretation of the equation follow from the relation

t xS xSΦ = +                    (24)

Here, L=Φ 0 along a curve x:=ϑ0(t, x, p) which is determined from a 
solution of equation (R31). Then L ≥ Φ 0 along each other curve and the 

curve ϑ0 minimizes the functional ( ) ( )( ), ,L x t x t t dt∫ 

. In other words, 

the difference L -Φ 0 as a function of x  has a minimal value 0 as x =p. 
It follows that

,x x t xS L S L xL= = −
 



                  (25)

Let us define xy L=


 and H L yx− = −  . These values are called by 
spatial and temporal impulses in a space t, x, x . The the differential 
form y dx – H dt is differential dS(x, t) if x:=p(x, t) [14]. The same result 
follows from the Euler equation

x x
d L L
dt

=


                     (26)

Where ( ) [ ] 1,
2xL L H x H x x= − =



   . Then a line ( )dx t dt p=  is 

extrenal of the functional. As shown above, this extrenal is the required 
minimum.

From the variational problem for a lagrangian L(t, x, x ) we can 
obtain a local hamiltonian L(t, x, y) and the corresponding local 
Hamilton-Jacobi equation. Then on characteristics dx(p, t)=p we have 
the equation

( )( ) ( )( ) ( )( ) ( ) ( ) ( ), , , , , , , , ,dS x t p t S x t p t S x t p t dx t p dx t p
H p

dt t x dt dt
∂ ∂

= + = −
∂ ∂

  (27)

that spectre σ(TGr) ∩ {z: |z|=1}=ф, where ф is empty set.

Further we assume that h>0 is a small parameter, and we consider 
the problem with accuracy O(h2), where O(h2) → 0) as t → +∞. We find 
solutions in the form:

( ) ( ) ( ),x, t, x, t,iS x t hh e hψ ϕ=                   (7)

where S(x, t) is a real phase, and φ(x, t, h) is real amplitude. (Below, 
where it will not cause misunderstandings, the parameter h will be 
omitted).

We assume that C0([0; l] × [0+∞) is the space of bounded continuous 
functions, and C2 is the space of twice differentiable functions with 

the norm: 22
0
sup k

k
f c f

=
= ∑ , where 0f  is the norm in C0 ([0, 

l] × [0,+∞. The function ψ  ∈ C2 belongs to if its real and imaginary 
parts belong C2([0, l] × [0,+∞. Then in C2 - norm there is the following 
convergence:

( ) ( )2 2
1,S x t c p t x p c⇒ Φ −                      (8)

where p1(ϛ) is 2N∕p - periodic piecewise constant distribution with 
finite number Ґ of points of discontinuities. Further

( ) ( )2 2
2 1,x t c p t x p cϕ ⇒ Φ  −                        (9)

where p1(ϛ) is 2Nl∕p - periodic piecewise constant distribution with 
finite number Ґ of points of discontinuities. Here, Ґ =ϛ-1(D), where 

( )0
n

nD G A− ±
≥=   and A± is a set of saddle points of codimension one, 

and ϙ(ϛ)=(S0(ϛ), φ0(ϛ)) is an initial curve in R2, which is determined by 
initial data of the boundary problem, and N is least common multiple 
of the map G: (S,φ) → (Φ1(S,φ ), Φ2(S,φ)).

Method of Reduction of Problem to System of Integro-
Difference Equations

Now we return to the problem. Indeed, substituting (7) in eqn. (2), 
we obtain that

( ) ( ) ( )2
21 1 0

2 2 2
ihS SS ih S

t x t t
ϕ ϕϕ ϕ ϕ

−∂ ∂ ∂ ∂   + ∇ + − + + ∆ + ∆ =   ∂ ∂ ∂ ∂   
 (10)

We find solution with accuracy O(h2) so that

( ) ( )21 1 0
2 2

S SS ih S
t x t t

ϕ ϕϕ ϕ∂ ∂ ∂ ∂   + ∇ + − + + ∆ =   ∂ ∂ ∂ ∂   
                 (11)

Then we obtain the Hamilton-Jacobi equation

( )21 0
2

S S
t

∂ + ∇ = ∂ 
                   (12)

The boundary condition can be written in form:

( ) ( )0 0cos , , sin ,x xx l x l
S S S Sϕ ϕ ϕ ϕ= == =

= ℜΦ = Φ                    (13)

Where ℜ  and ℑ  real and imaginary parts of a complex number. 
Let us denote F1:=ℜΦ  and F1: = ℑ Φ . Then from eqn. (13) it follows 
that:

( ) ( )2 2 2
1 20 , ,x x l x l

F S F Sϕ ϕ ϕ= = =
= +                   (14)

( ) ( )2 2
2 20tan , ,x x l x l

S F S F Sϕ ϕ= − =
=                  (15)

We define the function 2 2
2 1 1: F FΦ = +  and 2 2

2 2 1: arctan F FΦ = , 
then the boundary condition (4) can be written as

( )2
20 ,x x l

Sϕ ϕ= =
= Φ                    (16)

( )10 ,x x l
S S ϕ= =

= Φ                   (17)

For simplicity, we consider, initially, the case, when ( )2 2: ϕΦ = Φ  
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By integration along characteristics dx∕dt=p and with help of 
boundary conditions the problem can be reduced to the system of 
integro-difference equations:

( ) ( ) ( )1, ,
2 2
px ps x t S x t l p l x= Φ  −  + + −                 (28)

( ) ( ) ( ) ( )( )
2

2, 0, , ,
t

t x p

Sx t t x l p s t x s p s t x s ds
x

ϕ ϕ ϕ
−

∂  = − +  − +  − + =   ∂∫   (29)

( ) ( )( ) ( )( ) ]
2

2 2l, , ,
t x p

t l p

St x l p s t l p x s p s t l p x s ds
x

ϕ ϕ
−

−

∂    Φ − + − + + − + +      ∂∫

( ) ( )( )
2

2 , ,
t

t x p

S p s t x s p s t x s ds
x

ϕ
−

∂  +  − +  − +   ∂∫

The first equation follow from the relation

( ) ( ) ( )1, 0, ,
2 2
p plS x t S t x p l S l t x p= − + = Φ  −  + =                (30)

( ) ( )1
1 1, ,
2 2

S x t l p l x plΦ  −  + − + 

where we used the boundary conditions for the phase. Integro-
difference eqn. (33) follows from the transport eqn. (19) which can be 
written as

2

2

1
2

d S
dt x
ϕ ϕ∂
= −

∂
                    (31)

along characteristics dx(t)∕dt=p. Integrating this equation from a point 
(x, t) to a point (x, t - l∕p) (Figure 1), and using functional boundary 
conditions, we obtain eqn. (33). Let us consider this system at a point 
x=l. Then we obtain

( ) ( )1, ,
2
plS l t S l t l p= Φ  −  +                   (32)

( ) [ ] ( ) ( )( )
2

2 2, , , ,
t

t l p

Sl t l t l p p s t l s p s t x s ds
x

ϕ ϕ
−

∂  = Φ − + +  − +  − +   ∂∫
 (33)

Here,

( ) ( ) ( )1
1 1, 0, ,
2 2

S x t S t x p px S l t x p px= − + = Φ  −  +           (34)

Then,

[ ] ( ) ( )1,
1 10, , ,

2S
S t x p S l t x p S l t x p p
x p
∂ ′ ′− = − Φ  −   −  +   ∂

 (35)

Hence,

[ ] ( ) ( )

( ) ( )

2
1, ,

1,2

10, , ,

1 1, , t
2

S S

S

S t x p S l t x p S l t x p
x p

S l t x p S l x p p
p

∂  ′′ ′− = − Φ  −  − +   ∂

′ ′′Φ  −   −    

    (36)

From eqn. (36) we obtain that

[ ] ( ) ( )

( ) ( )

2
1, ,2

1,2

10, , ,

1 1, , t
2

S S

S

S t x p S l t l p S l t l p
x p

S l t l p S l l p p
p

∂  ′′ ′− = − Φ  −  − +   ∂

′ ′′Φ  −   −    

     (37)

Here, a function S(l, t can be found from difference eqn. (32). It 
is known [5] that, in typical cases, symptotic solutions of difference 
equations tends to elements of attractor of corresponding dynamic 
system which are piecewise constant periodic functions p1(t) such 
that p1(t) ∈ A+

1, where A+
1 is a set of attractive fixed points of the map 

1, 1:
2
pl

µΦ = Φ + , for almost all points t ∈ R+. Let S a Sε= +  , where a ∈A+
1, 

and ε>0 is a small parameter. Then, with accuracy O(ε), we have

( ) ( ) ( )1, ,S l t a S l t l p′= Φ −                     (38)

Where ( )1 1 1a λ′Φ = ≤ . Then solutions of equation are 

( ) 1, k tS l t e′ = , where 
1 1lnpk

l
λ= , so that ( ) 12

1, t k tS l k e′′ =  Since, for 

parametrisation, x(p, s, t)=p(s - t) + x, t(s)=s, we have

( ) ( )
2

2 , 0,S p s t x s S t x p
x
∂ ′′ − +  = − ∂

                   (39)

Integro-difference equation can be written as

( ) ( ) ( ) ( )2 2

1, , 0, ,
2

t

t l p

l t l t l p S t l p p s t x s ds
p

ϕ ϕ ϕ
−

′′= Φ  −  − −  − +  =   ∫   (40)

( ) ( ) ( )( )12
2 12

1l, ,
2

t
k t l p

t l p

t l p k e p s t x s ds
p

ϕ ϕ−

−

 Φ  −  − − +   ∫

Let bϕ εϕ= +  , where b ∈ A+
2, and A+

2 is a set of attractive fixed 

points of the map Φ2. Let us also define ( ) ( )1k t l py t e −= . Then eqns. 
(39) and (42) can be reduced, with accuracy O(ε2), to the system of 
equations:

( ) ( )1, ,S l t S l t l pλ= −                    (41)

( ) ( ) ( )2
2 23

1, ,
2

l t l t l p lk by t l p
p

ϕ λ ϕ=  −  − − −                                 (42)

( ) ( )kl py t e y t l p= −                    (43)

Where 2 3
3 2 2kl plk be pλ = . The eigenvalues of these equations 

satisfies to the cubic equation

( )( )( )1 2 3 0λ χ λ χ λ χ− − − =                   (44)

Since k<0, all trajectories are attracted by a plane S,φ. But on 
this plane we obtain two independent differential equations for the 
phase and amplitude. asymptotic solutions of the boundary problem 
are determined by asymptotic solutions of the system of difference 
equations.

Let as define P a set of fixed points of the map

( ) [ ] [ ] 2
1 1 23

1: , , ,
2 2
plG s y S S k by

p
ϕ

 
→ Φ + Φ − 

 
, y(t)=ekl∕py(t-l∕p)      (45)

Hence, for k<0 all trajectories in R3 are attracted by a plane (S,φ) 
⊂ R2. It means that asymptotic behaviour of trajectories is determined Figure 1: Typical distributions of trajectories for a hyperbolic map.
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by solutions of two difference equations. Let us a map G:=(Φ1, Φ2 ): R2 
→ R2 has two attractive fixed points (a+

1, a
+

3 ) and one saddle point a±
2 

of codimension 1 as shown on Figure 1. Then from [15-17] it follows 
that that S(l, t) ⇒ p1(t) and φ(l, t) ) p2(t) as t → ∞, where p1(t) ∈ A+

1 and 
p2(t) ∈ A+2. Here,

A+
1, A+

2 are sets of attractive fixed points of maps (φ 1,φ2), 
correspondingly. The functions p1(t), p2(t) are periodic with periods 2N 
is least common multiple of periods of attractive circles of the map G.

Example 1
For example, we consider a quadratic map Φ: z → z2+μ, where μ, 

z ∈ C and C is a complex space. Then from the boundary conditions 
follows the relations:

2cosS 0 cos2x S x lϕ ϕ µ= = + =                   (46)
2sinS 0 sin 2x S x lϕ ϕ µ= = + =                  (47)

Where 1 2andµ µ µ µ= ℜ = ℑ . Next, from eqns. (46) and (47), we 
obtain that

2
2

0 2
1

sin 2Stan
cos2SxS as lϕ µ

ϕ µ=

+
= =

+
                 (48)

2 2 2
1 1 1 20 2 cos2 2 sin 2xy y Sy Syµ µ µ µ= = + + + +                 (49)

Where y:=φ2. Now linearising relation (48), (52) at a point S=0, we 
obtain that

2
0

1

2tan x
SyS as x l
y

µ
µ=

+
= =

+
                  (50)

2 2 2
1 2 1 20 2 4xy y y Sy as x lµ µ µ µ= = + + + + =                   (51)

We assume that μ2=0. then

2
0

1

2tan x
SyS as x l
y

µ
µ=

+
= =

+
                 (52)

2 2
1 10 2xy y y as x lµ µ= = + + =                 (53)

If 1y y µ= + , then
2

0xy y as x lµ= = + = 
                     (54)

Where μ=μ2
1-μ1. Hence,

( )2
10, ,t yϕ µ⇒ −                              (55)

As t → ∞, and we obtain the difference equation

( ) ( )2y t y t l p as x lµ= − + = 
                 (56)

If μ> 1∕4, then the map 2
1 : u uΘ →  has no fixed points, so that for 

each u ∈ R we have ( )1
i uΘ →∞  as t → ∞. If μ∕le1∕4, then the map 1Θ  

has fixed points

0,1
1 1
2 4

β µ= ± −                   (57)

Where β0 is a attractive point. In this case ( )1 uΘ →∞  for each u ∈ 
R J, where J=[-β0,β0]. If -2 ≤ μ ≤ 1∕4, then ( )J JΘ ⊂ . If μ ≤-2, then each 
point u ∈ J Ω 1( )Θ , where Ω 1( )Θ  is a set of non wandering point (in 
our case this set of attractive fixed point ). For μ ≤ -2, the set Ω 1( )Θ  is a 
cantor set on J. A solution u(t) is bounded on [0,∞)if and only if u(t)∈J 
for each t ∈ [-l∕p,0).

We assume that -2 <μ<1∕4. Then interval Iε:=[-β+ε,β0-ε]is 
invariant and 1Θ (u) is closure of a set. Hence, for -3∕4<μ<1∕4 on 

J is unique attractive fixed point β1. Then each solution u(t) tends 

to β1 as t → ∞, where 2
1 1̀ 1

1 1
2 4

β µ µ= − − −  This point exists if 

1 1
1 2 1 2
2 2 2 2

orµ µ≥ − + ≤ − − .

Next, eigenvalues of the Jacobi matrix at a fixed point A=(, 0) are 

1 1 12 2 muχ β= +  and 1
2

1 1

2βχ
β µ

=
+

. If 1 21 1andχ χ≤ ≤ , then a 

point A:=A+ is attractive. Then

( ) ( ) ( )1, 0,
2 2
p pS x t S t x p x p t x p x= − + ⇒ − +                           (58)

Where ( )1 0p ζ ⇒  as ζ →∞ . Similarly, since integral term tend 
to zero as ekt, where k<0, as shown above, we have

( ) ( ) ( ) ( ) ( )2 2 2
2, 0,

2 2 2 2
p p p px t t l p x l x p p t x p x l xϕ ϕ⇒ − + + − − + + −  (59)

where ( )2 1p asζ β ζ⇒ →∞ .

If μ2
1-μ1<3∕4, a point β1 is repelling, but instead appears attractive 

circle of period 2 which contains the points 2
2,3 1̀ 1

1 1
2 4

β µ µ= ± − +  

so that ( ) ( )1 1 2, 3: ,β β βΩ Θ = . Then trajectories ( ) ( )1 2 3,i u β βΘ ⇒ , for 

almost all u ∈ J, as i → ∞.

A set ( )0 1 1: i
iI β− −
≥= Θ  is finite. If u ∈ J I-, Then trajectories tends 

to the points (β2, β3). A limit function [ ] { }2 3:u orβ β∗Θ =  if u ∈ J, and 

[ ] [ ]: , /u muµ∗ ∗ Θ = Θ   if u∈I-.

In this case, each solution on the interval [-l∕p, 0) tends to a 2N1 ∕p - 
periodic distribution, where N1=1 (Figure 1).

Next, if 2,3 2,3 12 2χ β µ= + <1 then on a plane (S,φ) points (0,β2,3 
are attractive and a point (0, β1 is a saddle type point of codimension 1. 
Then each initial curve γ(t) such that that t ∈ [-p∕l, 0) can be represented 
as 1 2:γ γ γ+ +=  , where iterations Gi[γ1

+] tends to a point (0,β2 2, and 
iterations Gi[γ2

+] tends to a point (0,β2 as i → ∞. Here G is produced 
by system of difference equations. Iterations Gi(t’), where ut Wγ′∈   
determines points of discontinuities of limit p(t):=(S*(t), y*(t)) ∈ (Ґ,Ґ), 
where Wu(.) is an unstable manifold of the saddle point.

Asymptotic of System of Difference Equations
Thus asymptotic behaviour of difference equations is known for the 

so-called hyperbolic maps [18]. Indeed, if the map G: R2 → R2, which 
is produced by these equations, has a finite number of fixed points 
A, then functions S(l, t) and φ(l, t) tends to asymptotic 2Nl∕p periodic 
piecewise constant functions p 1(t) ∈ A and p2(t) ∈ A for almost all 
points t ∈ (-l∕p,1), excluding finite or infinite points of discontinuities 
(Figure 2). It is possible if the map G is hyperbolic. It means that the 
spectrum of the differential T(G) has no real points with values equal in 
modulus 1. If also stable manifolds Ws(A+) intersect unstable manifolds 
Wu(A-) and Wu(A+) transversally, and an initial curve (S0(-l∕p, 0), φ(-l∕p; 
0)) interact an unstable manifolds Wu(A±), then the map G is structural 
stable and hyperbolic.

Here, A+ is a set of attractive points the map G, A- is a set of 
repelling points, and A- is a set of saddle type points.

Let us define a set of non-wandering points Ω(G)=Per (G)=Fix 
(GN), where Per (G) is a set of periodic points, Fix (G) S is a set 
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of fixed points, and N=1; 2;:::. Let ( ) ( )s
a GW W a∈Ω=   where 

( ) ( ){ }: lim Gs mN

m
W a u W u a

→∞
= ∈ =  is a stable manifold of a fixed point a 

of the map G. Particularly, for any point u 2 W there is the finite limit

( ) ( )lim :Nj

j
G u G u∗

→+∞
=                   (60)

Let u(t)=(S(t), φ(t)) ∈ C0(R+ → R2). We define a set of initial 
functions

( ) [ ]( ) ( ) ( ){ }0 2ˆ ,0 , : 0 0H h t C l p R h G h= ∈ − =                      (61)

Then for each function ( ) ˆh t H∈  there is periodic piecewise 
constant function p*[h(.)]:R+Ω(G) such that

P*[h(t)] = Gi[G*(h(t – i))]=G*[Gi(h(t – il=p))]

Where t∈[i,i+l/p),i=0,1,…The function p*[h(t)] is constant if and 
only if h(t)∈ Ĥ ′ , where ( )

ˆ ˆ
aa Fix GH H∈

′ =  , and

( ) ( ) ( ) [{ }ˆ ˆ : , ,0)s
aH h t H h t W a t l p′ ′= ∈ ∈ ∈ −                 (63)

and ˆ
aH φ≠  where φ  is empty set, if and only if a ∈ Fix (G)g.

Then each solution u(t of the system of difference equations with 
an initial function ( )[ ),0

ˆ
l p

u t Ha
−

∈  tends to a constant a if t → +∞. 
Each solution u(t) of the system of difference equations with an initial 

function ( )[ ),0
ˆ ˆ

l p
u t H H

−
′∈  is asymptotic periodic function, and

( ) ( ) 2
lim * 0

Rj
u t Nj p h t

→+∞
′ ′+ −   =                   (64)

where t’ ∈ R+.

( )[ ),0
ˆ

al p
u t H

−
∈

Further, for any ε>0 and each solution u(t of the system of the 
difference equation such that 

( ) ( ) 2
lim sup * 0

Rj
u t Nj p u t

→+∞
′+ −   =                  (65)

It must be noted that

( ) ( ) 2
lim sup * 0

Rj
u t Nj p u t

→+∞
′+ −   ≠                   (66)

Thus asymptotic solution has the form

( ) ( ) ( ) ( )1 2
2, ip t x p hx t e p t x p hψ −= − + Ο                 (67)

where O(h2) → 0 as h2 → 0. For example, such type solutions describe 
distributions of order parameter has been obtained for the Ginzburg-
Landau equation with some boundary conditions for the phases and 
amplitudes of order parameter.

Thus it has been proved that the initial boundary value problem can 
be reduced to a system of integro-difference equations. These system 
can be, in its turn, reduced to a system of non-autonomic difference 
equations in R3, where non-autonomic perturbations are produced by 
the phase S(x, t) on characteristics dx∕dt=p. These perturbations tends 
to zero as t → +∞. As a result, the difference equations in R3 are reduced 
to a difference equations in R2 at (S,φ) - plane. Solutions of these 
equations (S,φ) are piecewise constant asymptotic periodic functions 
(p1, p2) with finite 'points' of discontinuities on a period. It should be 
noted that for difference equations we get asymptotic distributions 
from some class of initial data from C2(I, I), but for integro-difference 
equations it has been proved only that if solutions of integro-difference 
equations exists, then these solutions tends to functions (p1, p2) for a 
special class of initial data, which belongs to a small neighbourhood 
of limit functions (p1, p2). It should be noted also that if asymptotic 
invariant distributions of difference equations are asymptotic invariant 
solutions of integro-difference equations, becomes functions (p1, 
p2) are piecewise constant asymptotic periodic functions. It should 
be noted also that if a limit function p2(t-x∕p) is piecewise constant, 

the a function ( ) ( )
2

2
ih

t x pϕ
−

∆ −  in eqn. (10) tends to zero as t → +∞. It 
means that obtained solutions of the initial boundary value problem 
are accurate.

Figure 2: Limit solution of relaxation type. 
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Physical sense of the boundary conditions

The boundary conditions describes the changing of phases between 
input S(0, t) and output phase in the electronic device the multiplier of 
the phase N and the amplifier J of a frequency of the input signal at a 
point x=l. Additionally, there is the resistor R. The device is designed so 
that we can change independently the phase and amplitude. The map 
Φ-1

1 describes actions of the amplifier J and the multiplier on the input 
phases independently on the values of the amplitude of input signal 
[14,15].

Physical Applications for Mandelbrot and Julia Sets
In this section, we use the paper [19] where it the dynamics of a 

kicked particle which moves in a double-well potential. In this paper, it 
is shown that the stroboscopic dynamics of the particle can be reduced 
to the research of dynamics of orbits of the known complex logistic 
map. The logistic map is homeomorphic to the quadratic map Qc(z):=z2 
+c where C ∈ C is a complex parameter. But this map has well-known 
Julia and Mandelbrot sets. Indeed, the map Qc(z): C → C is connected 
or totally disconnected [20,21]. The Mandelbrot set represent is 
a 'delimiter' between c - values with connected Julia and totally 
disconnected Julia sets [22]. The Mandelbrot set is connected [23]. They 
also discussed also the non-solved hypotheses that the Mandelbrot set 
is locally connected [20]. Next, by Brunner and Hubbard it has been 
studied the Mandelbrot set for cubic. There are two critical orbits for 
cubics [21].

For the map ( ) : , 2,3,4....,n
cQ z z c n= + =


 Roshon generalize the 
study of the case n=3,4. He proved that in a case n=4 the Mandelbrot set 
is connected. In a study [20] the cases n=2,3,4,5 has been considered. 
Let f:X → X any function, where X is a topological space. Let us define 
the Picard orbit by the recurrent formula:

un=f(un-1), n=1,2….                  (68)

Let M be the Mandelbrot set for the map Qc(z):=z2 + c where c ∈ C 
such that the orbit of the point 0 is bounded so that

M:={c∈C:Qk
c(0), k=0,1…, is bounded}                 (69)

where Qk
c (0) are iterations of the function with a condition Qc(0)=0 

which produce a critical orbit. Then there is known for the quadratic 
map that if f(c)>2 and z>c, then fn(z) → ∞ as n → ∞. For example, the 
point c is not in the set M. As shown in a study [20], if c ∈ [-2,1∕4), then 
fn(z)<const. In this case, the Julia set is connected.

Conclusion
Thus an initial boundary problem for the linear Shrodinger 

equation with functional nonlinear two-points boundary conditions 
is considered. A structure of attractors of the problem has been 
constructed. It is shown that the attractor contains piecewise constant 
periodic functions with finite 'points' of discontinuities on a period. 
Thus phases and amplitudes of wave functions of the Shrdinger 
equation are piecewise constant periodic functions. The method of 
reduction of the problem to a system of integro-difference equations 
has been applied. It is shown that these equations have invariant 
piecewise constant periodic solution. It is proved that perturbations of 
such solutions are asymptotically stable.
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